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Abstract. The free-vibration modes of an annular mirror (FVMAM), derived from the thin
plate theory and reflecting the intrinsic characteristics of the physical phenomenon of resonance,
have been applied to compensate the aberrations of the active optics system. As an application
example, the compensations of some low-order aberrations of the 2.5-m Wide-Field Survey
Telescope with the FVMAM have been presented. In addition, a quantitative comparative
study of the aberration corrections between the FVMAM and the annular Zernike polynomials
has been carried out. The results have shown that the FVMAM are more effective to correct the
aberrations. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported
License. Distribution or reproduction of this work in whole or in part requires full attribution of the origi-
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1 Introduction

The renowned Zernike polynomials, first proposed by Zernike,1 are widely used to represent the
optics aberrations in many optics systems. However, the research results have suggested that the
Zernike polynomials work inefficiently in the dynamic range of the aberration corrections of
the active optics and the adaptive optics.2 The task of the active optics systems is to correct
the optics aberrations in an effective way.3 This implies that a good method for correcting the
aberrations is to remove the residual errors with minimum loads and the least computing re-
source. In our previous work,4 the free-vibration modes of an annular mirror (FVMAM) have
been proposed to replace the annular Zernike polynomials. The results have shown that the mode
shapes of the FVMAM resemble those of the annular Zernike polynomials, and there is almost
a one-to-one match between each mode of the FVMAM and each mode of annular Zernike
polynomials. Moreover, the qualitative results have shown that the FVMAM is more likely
to perform more efficiently in the aberration corrections of the active optics and the adaptive
optics. To verify this, we present a quantitative comparative study of the aberration corrections
between the FVMAM and the annular Zernike polynomials.

2 Mathematical Formulation

2.1 Mathematical Formulation of the FVMAM

In our previous work,4 the FVMAM is stemmed from a thin annular plate. An annular mirror
made of a glass annular plate is shown in Fig. 1. The thickness of the annular mirror is denoted
by 2h. The outer and the inner diameters of the annular mirror are denoted by 2b and 2a, respec-
tively. The edges of the outer surface r ¼ b and the inner surface r ¼ a are free. This means the
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following modes of the plate are derived from the free vibration. Since the detailed derivation of
the FVMAM had been presented in the previous work,4 here the three-dimensional formulas of
the FVMAM are given directly. An arbitrary wave-front error Uðr;ϕÞ can be expanded with the
infinite basis terms of the FVMAM:

EQ-TARGET;temp:intralink-;e001;116;550Uðr;ϕÞ ¼
X∞
n¼0

X∞
m¼1

cnmunmðrÞ cosðnϕÞ; (1)

in which the unmðrÞ cosðnϕÞ denotes the orthonormal basis terms of the FVMAM, m denotes
the order, n denotes the symmetry, and cnm denotes the coefficient of the modes of the
FVMAM. Here

EQ-TARGET;temp:intralink-;e002;116;466umnðrÞ ¼ KnmunmðrÞ; (2)

where

EQ-TARGET;temp:intralink-;e003;116;423Knm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb2 − a2Þ∕

�
η

Z
b

a
wnmðrÞdr

�s
; η ¼

�
2 n ¼ 0

1 n > 0
; (3)

EQ-TARGET;temp:intralink-;e004;116;360umnðrÞ ¼ H1;nJnðλmrÞ þH2;nYnðλmrÞ þH3;nInðλmrÞ þH4;nKnðλmrÞ; (4)

where JnðλmrÞ, YnðλmrÞ, InðλmrÞ, and KnðλmrÞ are the n’th-order Bessel function of the first
kind with argument λmr, the n’th-order Bessel function of the second kind with the argument
λmr, the n’th-order modified Bessel function of the first kind with the argument λmr, and the
n’th-order modified Bessel function of the second kind with the argument λmr, respectively.
The four unknowns, H1;n to H4;n, could be determined by the boundary conditions. Here,
λm is a function of the material parameters, geometric parameters, and natural frequencies of
the annular mirror. (For more details see our previous work.4)

2.2 Aberration Compensation Algorithm

To be easy for a reader to understand, here the brief introduction of the aberration compensation
algorithm has been presented. As an application example, the compensations of some low-order
aberrations of the 2.5-m Wide-Field Survey Telescope (WFST) with the FVMAM will be
presented. The WFST, which will use an advanced active optics control system, has a unique
primary focus with a 7-lens corrector system. It provides not only the best image quality over a
wide spectrum range from UV to infrared but also over a 3-deg wide field of view. Figure 2
shows the conceptual design model of WFST.5 The primary mirror of the WFST is supported by
54 pneumatic actuators (see Fig. 3), which are used to adjust the deformation shape of the reflec-
tive surface of the primary mirror to compensate the optical aberrations.

The task of the active optics systems is to correct the optics aberrations in an effective way,
and a good method for correcting the aberrations is to remove the residual error with minimum
loads and the least computing resource.3 Therefore, the aberration compensation can be served as
a general optimization problem, which can be expressed as5–7

Fig. 1 The configuration of an annular plate.
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EQ-TARGET;temp:intralink-;e005;116;269

Ω ¼ min ΩðγÞ ξ ¼ ½ξ1; ξ2; : : : ; ξm�
s:t: ξLi ≤ ξi ≤ ξUi ði ¼ 1;2; 3; : : : ; mÞ
ϑLj ≤ ϑjðγÞ ≤ ϑUj ðj ¼ 1;2; 3; : : : ; n1Þ
hLj ≤ hjðγÞ ≤ hUj ðj ¼ 1;2; 3; : : : ; n2Þ
wL
j ≤ wjðγÞ ≤ wU

j ðj ¼ 1;2; 3; : : : ; n3Þ; (5)

in which Ω is the objective function, and ξ denotes the design variable. The terms ϑ, h, and w are
the state variables. Here ξUi , ϑ

U
j , h

U
j , and wU

j are the upper limits of ξ, ϑ, h, and w, respectively,

and ξLi , ϑ
L
j , h

L
j , and w

L
j are their lower limits. The termsm, n1, n2, and n3 are the numbers of ξ, ϑ,

h, and w, respectively.7 Here the hybrid optimization algorithm5,7 will be applied.
The damped least squares method, proposed by Levenberg and Marquardt, is also named

Levenberg–Marquardt algorithm.8 The corrective forces ffgs of the primary mirror can be
calculated with the damped least squares method:9

EQ-TARGET;temp:intralink-;e006;116;88ffgs ¼ −ð½C�Tr×s½C�r×s þ p½I�s×sÞ−1½C�Tr×sfδgr; (6)

Fig. 3 The support system of primary mirror of WFST.

Fig. 2 The conceptual design model of WFST.
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where ffgs, fδgr, ½C�r×s, ½I�, and p denote an s-dimensional vector of the corrective forces of the
support points of the annular mirror, an r-dimensional vector of the displacements of the reflec-
tive surface nodes of the annular mirror, a compliance matrix, the unit matrix, and the damping
factor, respectively. In this paper, s ¼ 54 [see Figs. 3 and 4(b)]. Here p will serve as a design
variable in the optimization algorithm. After the optimization, we can obtain the best value of p.
In Eq. (6), the value of p includes two components: the linear component and nonlinear com-
ponent. To separate the linear component from p, a linear scale factor is introduced, as shown in
the following equation:

EQ-TARGET;temp:intralink-;e007;116;326ffSg ¼ κffg: (7)

In this paper, both κ and p act as two design variables (the optimization factors) during the
simulation of the aberration compensation of the active optics. The corrective forces vector
ffSg is used as the corrective forces input to be loaded to the 54 supporting points of the primary
mirror. The displacement vector fΔg of the reflective surface, produced by ffSg, should be equal
to −fδg in an ideal state but not in practice. Thus, the residual displacement can be obtained as
follows:

EQ-TARGET;temp:intralink-;e008;116;221fwig ¼ fδig þ fΔig; (8)

where i denotes the i’th node of the reflective surface of the annular mirror. The paraboloidal
shape surface meets the following equation10 provided that the paraboloidal shape of the primary
mirror has on any residual displacements:

EQ-TARGET;temp:intralink-;e009;116;157X2 þ Y2 ¼ 4ΓðZ þ cÞ; (9)

in which Γ and c are the focal length and the vertex z coordinate, respectively. Provided that there
are any residual displacements, the reflective surface of the new status meets the equation as
follows:

EQ-TARGET;temp:intralink-;e010;116;90X2
1 þ X2

1 ¼ 4ΓðZ1 þ cÞ; (10)

Fig. 4 The FEM of the annular primary mirror of the WFST. (a) The mesh of the FEM. (b) The 54
axial supports points of the primary mirror of the WFST.
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where c, which is fixed, is equal to that of Eq. (9). For every node of a reflective surface, the
direction cosines of the reflective surface normal can be written as

EQ-TARGET;temp:intralink-;e011;116;711

2 cos φ1 ¼ −
Xiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΓðΓþ Zi þ cÞp ;

2 cos φ2 ¼ −
Yiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΓðΓþ Zi þ cÞp ;

2 cos φ3 ¼ −
2Γffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΓðΓþ Zi þ cÞp : (11)

The displacement of the reflective surface node i is denoted with ðui; vi; wiÞ, and the distance to
this best-fitted paraboloid is denoted with σi, we can obtain10

EQ-TARGET;temp:intralink-;e012;116;583X − ðXi þ uiÞ ¼ �σi cos φ1; Y − ðYi þ viÞ ¼ �σi cos φ2; Z − ðZi þ wiÞ ¼ �σi cos φ3:

(12)

We can get the geometrical RMS distance surface error by the following equation:10

EQ-TARGET;temp:intralink-;e013;116;525RMSg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

r

Xr

i¼1

σ2i

s
: (13)

Further, we can acquire the effective residual surface error (the residual half path length error)
as follows:10

EQ-TARGET;temp:intralink-;e014;116;449RMSe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

r

Xr

i¼1

s2i

s
si ¼ σi cos ψ i; (14)

where ψ is the angle between the surface normal and the reflective surface axis. According to
Eqs. (13) and (14), here RMSe is set as the objective function, RMSg is set as the state variable,
and p and κ are set as two design variables. Therefore, we can obtain

EQ-TARGET;temp:intralink-;e015;116;361Ω ¼ RMSe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

r

Xr

i¼1

s2i

s
½ξ1; ξ2; · · · ; ξm� ¼ ½p; κ� ϑ ¼ RMSg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

r

Xr

i¼1

σ2i

s
: (15)

In this paper, the hybrid optimization algorithm, proposed by us in previous works,5,7 has
been applied. The hybrid optimization algorithm exploits the complementary merits of both the
zero- and first-order optimizations, with the former in global scale and the latter in small scale.
Here the convergence criteria are the tolerance errors of p, κ, RMSg, and RMSe, which are
constants of 1 × 10−18, 1 × 10−7, 1 × 10−18, and 1 × 10−18, respectively. In this paper, 55 is also
set as the maximum of iteration in each optimization process, but the maximum is usually much
less than 55 with the hybrid optimization algorithm providing a fast convergence with a high
precision.

3 Numerical Results and Discussion

To illustrate the effectiveness of the FVMAM, we present some numerical results in this section.
In following the calculations, we use the compensations of some low-order aberrations of the
primary mirror of 2.5-m WFST as the application examples. In all of the following calculations,
we choose 2a ¼ 1000 mm, 2b ¼ 2500 mm, and 2h ¼ 120 mm, unless stated otherwise. The
material of the mirror is Cer-Vit material, whose mass density, Poisson’s ration, and Young’s
modulus are ρ ¼ 2530 kgm−3, ν ¼ 0.24, and Em ¼ 91 GPa, respectively.10 Figure 4(a) shows
the finite element model (FEM) of the primary mirror of the WFST. Figure 4(b) shows the axial
support design of the primary mirror, which has 54 supporting points (pneumatic actuators).
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Fig. 5 The initial errors and the minimum residual errors. (a) The distribution of the initial errors of
u21ðr Þ cos 2ϕ. (b) The distribution of the minimum residual errors of u21ðr Þ cos 2ϕ after one time of
correction.

Fig. 6 The relationship between the objective function RMSe of u21ðr Þ cos 2ϕ and the design
variables (p and κ).
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Fig. 7 The relationship between the objective function RMSe of u21ðr Þ sin 2ϕ and the design
variables (p and κ).

Fig. 8 The initial errors and the minimum residual errors. (a) The distribution of the initial errors of
u21ðr Þ sin 2ϕ. (b) The distribution of the minimum residual errors of u21ðr Þ sin 2ϕ after one time of
correction.
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Because the astigmatism aberrations are the commonest aberrations of the active optics tele-
scope, here we choose the correction simulations of four kinds of the astigmatism aberrations,
including the u21ðrÞ cos 2ϕ, u21ðrÞ sin 2ϕ, u31ðrÞ cos 3ϕ, and u31ðrÞ sin 3ϕ, to illustrate the
effectiveness of the FVMAM. These modes can be expressed as follows:

EQ-TARGET;temp:intralink-;e016;116;687

u21 cos 2ϕ ¼ K21½H1;1J1ðλ2rÞ þH2;1Y1ðλ2rÞ þH3;1I1ðλ2rÞ þH4;1K1ðλ2rÞ� cos 2ϕ;
u21 sin 2ϕ ¼ K21½H1;1J1ðλ2rÞ þH2;1Y1ðλ2rÞ þH3;1I1ðλ2rÞ þH4;1K1ðλ2rÞ� sin 2ϕ;

u31 cos 3ϕ ¼ K31½H1;1J1ðλ3rÞ þH2;1Y1ðλ3rÞ þH3;1I1ðλ3rÞ þH4;1K1ðλ3rÞ� cos 3ϕ;
u31 sin 3ϕ ¼ K31½H1;1J1ðλ3rÞ þH2;1Y1ðλ3rÞ þH3;1I1ðλ3rÞ þH4;1K1ðλ3rÞ� sin 3ϕ: (16)

In this paper, the initial errors before the optimizing are 30 nm, unless stated otherwise.
Figures 5(a), 8(a), 9(a), and 10(a) show the distribution of the initial errors of the four kinds
of astigmatism aberrations. Figures 6, 7, 11, and 12 show the relationships between the objective
function RMSe and the design variables (p and κ). Examining at Figs. 6, 7, 11, and 12, it is
apparent that the objective function RMSe is very sensitive to a very slight variation of the design
variables (p and κ). Figures 5(b), 8(b), 9(b), and 10(b) show the minimum residual errors of the
four kinds of the astigmatism aberrations after one time of the optimizing, and the minimum

Fig. 9 The initial errors and the minimum residual errors. (a) The distribution of the initial errors of
u31ðr Þ cos 3ϕ. (b) The distribution of the minimum residual errors of u31ðr Þ cos 3ϕ after one time of
correction.
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Fig. 10 The initial errors and the minimum residual errors. (a) The distribution of the initial errors of
u31ðr Þ sin 3ϕ. (b) The distribution of the minimum residual errors of u31ðr Þ sin 3ϕ after one time of
correction.

Fig. 11 The relationship between the objective function RMSe of u31ðr Þ cos 3ϕ and the design
variables (p and κ).
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residual errors of RMSe ¼ 2.63, 1.13, 3.71, and 5.22 nm have been stamped on Figs. 6, 7, 11,
and 12, respectively. More detailed results of the aberration compensation by the FVMAM have
been listed in Table 1. As can be seen from the data in Table 1, 91.23% of the initial errors of
u21ðrÞ cos 2ϕ, 96.23% of the initial errors of u21ðrÞ sin 2ϕ, 87.63% of the initial errors of
u31ðrÞ cos 3ϕ, and 82.60% of the initial errors of u31ðrÞ sin 3ϕ could be removed after one time
of the correction.

The mode shapes of the FVMAM resemble those of the annular Zernike polynomials, and
there is almost a one-to-one match between each mode of the FVMAM and each mode of annu-
lar Zernike polynomials. Here Z5, Z6, Z9, and Z10, which denote the annular Zernike, corre-
spond to u21ðrÞ cos 2ϕ, u21ðrÞ sin 2ϕ, u31ðrÞ cos 3ϕ, and u31ðrÞ sin 3ϕ, respectively (see our
previous work4). Here Z5, Z6, Z9, and Z10 can be expressed as follows:

EQ-TARGET;temp:intralink-;e017;116;197

Z5 ¼
ffiffiffi
6

p
r2 cos 2ϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ς4 þ ς2 þ 1
p ;

Z6 ¼
ffiffiffi
6

p
r2 sin 2ϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ς4 þ ς2 þ 1
p ;

Z9 ¼ 2
ffiffiffi
2

p
r3 cos 3ϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ς6 þ ς4 þ ς2 þ 1
p ;

Z10 ¼ 2
ffiffiffi
2

p
r3 sin 3ϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ς6 þ ς4 þ ς2 þ 1
p : (17)

Fig. 12 The relationship between the objective function RMSe of u31ðr Þ sin 3ϕ and the design
variables (p and κ).

Table 1 The detail results of the aberration compensation by the FVMAM.

Error’s
name

Start
errors (nm)

Remaining
RMS (nm)

Best
damping
factor p

Best
linear scale
factor κ

One time of
correction
rate (%)

Absolute
value of the
maximum
force (N)

RMS of the
forces (N)

u21 cos 2ϕ 30 2.63 5.41 × 10−9 1.17 91.23 1.21 0.49

u21 sin 2ϕ 30 1.13 6.83 × 10−9 1.20 96.23 1.24 0.47

u31 cos 3ϕ 30 3.71 1.96 × 10−9 1.26 87.63 3.74 1.30

u31 sin 3ϕ 30 5.22 2.21 × 10−9 1.08 82.60 3.05 1.16
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where ς ¼ a∕b. To demonstrate the efficiency of the FVMAM, a comparative study of the
FVMAM and the annular Zernike polynomials is presented. Other being equal (FEA model,
etc.), Z5, Z6, Z9, and Z10 are used separately to validate u21ðrÞ cos 2ϕ, u21ðrÞ sin 2ϕ,
u31ðrÞ cos 3ϕ, and u31ðrÞ sin 3ϕ quantitatively. As can be seen from the data in Table 2,
89.20% of the initial errors of Z5, 91.63% of the initial errors of Z6, 76.70% of the initial errors
of Z9, and 67.96% of the initial errors of Z10 could be removed after one time of correction. The
results suggest that the residual errors, after a compensation by the FVMAM, are much better
than those of the annular Zernike polynomials (see Tables 1 and 2). Moreover, lower magnitude
of correction forces and smaller magnitude of the RMS of correction forces are required with
using the FVMAM to compensate the aberrations. In other words, there are two benefits of using
FVMAM: (a) lower magnitude of correction force required, which could allow the use of actua-
tors with smaller range and better resolution/repeatability, resulting in a reduction of random
force errors that limit the quality of the correction; (b) reduced print-through of high-spatial-
frequency bumps on the mirror surface, which spread light widely in the image. Here, comparing
the FVMAM and annular Zernike polynomials on effectiveness is also presented (see Fig. 13).
The effectiveness metric of each mode, which is defined as dividing the RMS surface change
by the corresponding RMS of the actuator forces, refers to the approach for comparing correction
modes, which was proposed by Dr. Jerry Nelson for the Thirty Meter Telescope. In this paper,
this metric is highest for u21ðrÞ sin 2ϕ, whose effectiveness serves as the criterion. From Fig. 13,
it is observed that the effectiveness of each mode of the FVMAM is much larger than that of the
matched mode of annular Zernike polynomials.

4 Summary

The goal of this paper is to present an effective way for the aberration compensation of the active
optics. The FVMAM, derived from the elasticity theory, reflecting the natural properties of the
physical phenomenon of the resonance, are applied in the diffraction theory of the optical

Table 2 The results of the aberration compensation by the annular Zernike polynomials.

Error’s
name

Start
errors (nm)

Remaining
RMS (nm)

Best
damping
factor p

Best linear
scale factor κ

One time of
correction
rate (%)

Absolute value
of the maximum

force (N)
RMS of the
forces (N)

Z5 30 3.24 1.49 × 10−9 1.14 89.20 4.93 1.74

Z6 30 2.51 1.08 × 10−9 1.17 91.63 15.12 4.53

Z9 30 6.99 2.00 × 10−9 1.32 76.70 6.67 2.12

Z10 30 9.61 5.31 × 10−9 1.47 67.96 3.65 1.68

Fig. 13 Comparison the FVMAM and annular Zernike polynomials on effectiveness.
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aberrations. Moreover, a quantitative comparative study of the aberration corrections between
the FVMAM and the annular Zernike polynomials has been presented. The main conclusion to
be drawn from the results of the study is that FVMAM are more effective to correct the
aberrations.
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