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Abstract. An unsupervised neuro-fuzzy system, Gaussian fuzzy self-organizing map (GFSOM),
is proposed for hyperspectral image classification. This algorithm operates by integrating an
unsupervised neural network with a Gaussian function-based fuzzy system. We also explore
the potential for hyperspectral image analysis of three other artificial intelligence (AI)-based
unsupervised techniques popular for multispectral image analysis: self-organizing map (SOM),
fuzzy c-mean (FCM), and descending fuzzy learning vector quantization (DFLVQ). To apply
these methods effectively and efficiently to hyperspectral imagery, an optimal learning sample
selection strategy and a prototype initialization system are developed. An experimental study on
classifying an EO-1/Hyperion hyperspectral image illustrates that GFSOM achieves the best
accuracy, since it can model both the central tendency characteristics of input samples and cap-
ture the dispersion characteristics of data within a cluster. By adopting the system initialization
approach developed here, all the AI-based techniques have the capability to classify hyperspec-
tral images and can deliver acceptable accuracy, which could consequently accelerate their tran-
sitions from the multispectral to the hyperspectral field. © 2012 Society of Photo-Optical
Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JRS.6.063515]
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1 Introduction

One of the latest advancements in remote sensing is the advent of hyperspectral imaging spectro-
meters that are able to acquire data simultaneously in hundreds of bands with narrow band-
widths. Hyperspectral data can provide detailed contiguous spectral curves, a trait that
traditional multispectral sensors cannot offer. For example, NASA’s Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) has 224 contiguous bands with a nominal bandwidth of 10 nm
for each, while the multispectral sensor Landsat thematic mapper (TM) only provides seven
noncontiguous broad bands with an average bandwidth of 100 nm, which leaves large gaps
between bands. This increase in spectral dimensionality not only allows the delineation of
the land surface at the land use and land cover level, but also potentially enables the character-
ization of various minerals, soils, rocks, and vegetation at the material level.1 However, the
greater spectral detail comes at a cost of huge data volumes with high dimensionality, which
poses great challenges in extracting thematic information from these images.

The conventional multispectral classification approaches, such as maximum likelihood,
could not deliver satisfactory results when applied to hyperspectral images.2 This is attributed
to the fact that most multispectral classifiers are statistics-based, assuming multivariate
normal distributions, linearity, and an absence of collinearity for the input bands. This is hardly
achievable for hyperspectral images with hundreds of bands. For supervised classifiers, the num-
ber of training samples for each class, at a minimum, should be more than the number of spectral
bands to avoid the creation of singular matrices.3 In practice, it is suggested that the number of
training samples for each class be 10 times the number of input image bands in order to obtain
acceptable results,1 which becomes very difficult, if not completely possible, for hyperspectral

Journal of Applied Remote Sensing 063515-1 Vol. 6, 2012



images, due to their high spectral dimensionality. For these reasons, nonparametric approaches
specifically designed for processing hyperspectral data have been proposed, such as spectral
angle mapper, linear spectral unmixing, and spectroscopic library matching.1 These methods
are supervised techniques based on the availability of reference endmembers, which are spec-
trally pure reflectance readings of different materials. Since these endmember-based approaches
are nonparametric, there is no need to collect a large number of training samples for each class.
However, as supervised techniques, they require a priori knowledge of the ground reference
information in the form of a complete set of endmembers. Endmembers can be derived
either from extensive in situ and lab work using a spectroradiometer or from a hyperspectral
image if spectrally pure pixels of the materials can be identified on the image. However,
in situ data collection to obtain ground reference information in advance is not always possible
prior to image classification. Additionally, endmember determination from the image itself
is very difficult, due to the existence of mixed pixels in the images. Therefore, when no or
very little a priori ground reference information is available, unsupervised approaches
appear to be an attractive alternative to the existing endmember-based methods.1 However,
most conventional unsupervised image classifiers, such as the Iterative Self-organizing Data
Analysis (ISODATA) technique, were designed to analyze multispectral imagery and may
be inadequate for hyperspectral data analysis for two main reasons. First, these methods are
computationally intensive, because all pixels in the image must be compared with all clusters
through multiple iterations in order to assign them to the closest cluster. Second, they tend to
suffer from performance degradation with increased spectral dimensionality of the hyperspectral
images.4

Artificial intelligence (AI)-based approaches, especially artificial neural network and
fuzzy logic techniques, have been extensively employed to analyze multispectral images.
Mas and Flores5 have reviewed these techniques for remote sensing applications. Like conven-
tional image classifiers, AI-based approaches can be supervised or unsupervised. Among the
various unsupervised classifiers, self-organizing maps (SOM),6 fuzzy c-means (FCM),7 and
descending fuzzy learning vector quantization (DFLVQ)8 have historically been used for pro-
cessing multispectral images or hyperspectral images with reduced spectral dimensionality.9–14

Despite avoiding problems with singular matrices and the need for obtaining pure pixels as with
the statistics-based and endmember-based approaches, these AI-based classifiers have not been
widely used in hyperspectral image classification. This may be attributed to certain limitations
with these AI-based classifiers. As with the ISODATA approach, these classifiers involve com-
putationally intensive algorithms. Further, when assigning a pixel to a specific cluster, these
classifiers only consider the center of the clusters and ignore the data dispersion within each
cluster.15 In addition, the exponent weighting parameter involved with some of these classifiers
(such as FCM and DFLVQ) is difficult to specify.16

To address these deficiencies of the SOM, FCM, and DFLVQ approaches, we propose an
unsupervised Gaussian fuzzy self-organizing map (GFSOM), a neuro-fuzzy system specifically
designed for hyperspectral image classification. A neuro-fuzzy system combines the advantages
of neural network and fuzzy logic systems and avoids the shortcomings of each individual sys-
tem when they are used separately for image classifications. These shortcomings include the
black box problem of a neural network and the fuzzy system’s lack of an automatic knowledge
acquisition capability.17 The GFSOM classifier is built upon the success of its supervised coun-
terpart, Gaussian fuzzy learning vector quantization (GFLVQ).2 We also investigate whether the
optimal learning sample selection strategy and the prototype initialization system developed for
the GFSOM system can be adopted by the SOM, FCM, and FLVQ approaches in classifying
hyperspectral images.

2 Background

The basic algorithms underlying the three classic AI-based unsupervised classifiers (SOM,
FCM, and DFLVQ) are described below, and their limitations are briefly examined. They
will be used as benchmarks to evaluate the proposed GFSOM system.
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2.1 SOM

SOM is a “winner-take-all” unsupervised learning neural network. It was first proposed by
Kohonen6 and is often used to classify inputs into different categories. SOM has two
layers: an input layer and a competitive or output layer. The input layer has the same dimen-
sionality as the input vector, and the output layer consists of a physical net of neurons located at
fixed positions. Different from many other neural networks, SOM is unique in that it is in-
dependent of any activation function, and it does not have a hidden layer. For a given input
vector, outputs are computed for the neurons in the output layer, and the winner is the neuron
whose weight has the minimum distance from the input vector. Then the network updates
the weight of the winner and those of its predefined neighbors via a learning rule. In this
way, the output neurons become selectively tuned to the input patterns presented during
this competitive-learning procedure. In the case of remotely sensed image classification,
for a pixel with N bands as an input vector (x1; x2; : : : xn), the winner output neuron is
decided by:

minðkxi − cijkÞðj ¼ 1; 2; : : :MÞ; (1)

where cij is the weight linking the i’th band input and j’th cluster of an input image, N is the
dimensionality of x (i.e., the number of bands),M is the total number of clusters (i.e., the number
of output neurons), and jj � jj is any norm expressing the similarity between an input vector and
the prototype vector. The weights of the output neurons are then updated by

Δcij ¼ ηðxi − cijÞ; if output neuron j is the winner; (2)

Δcij ¼ 0; otherwise; (3)

where η is the learning rate.
Like other AI-based unsupervised algorithms, the objective of SOM learning is to generate

the weights to model the prototypes, also known in the literature as the code vectors or center
of the clusters.16 SOM uses the Euclidean distance to determine the closeness of an input pixel to
the center of a cluster, but it does not consider the data dispersion in the cluster. SOM has been
extensively applied in various areas18 but has not yet been seen in clustering hyperspectral
images, due to certain limitations.12 For example, it is difficult to select the initial neighborhood
size that will be altered during the learning iterations in order to achieve “useful” results.8 When
it is used for hyperspectral image classification, the first Kohonen heuristic rule that monoto-
nically decreases the learning rate with time works well, but the second rule that decreases the
neighborhood size adaptively may not be applicable for images with a small number of spectral
clusters (say, ≤4). The initial values for the two parameters, η and cij, need to be set before
the learning starts, and these values can greatly influence both the speed of the computations
and the learning outcome.

2.2 FCM

The learning rules in SOM are basically a local updating strategy that ignores the global relation-
ships between the winner and the rest of the weights, in that all the emphasis is put on the win-
ning prototype.16 Unlike SOM, FCM considers the global geometric structure present in the data
and updates all the prototypes during the learning iterations. FCM was firstly developed by
Dunn19 and improved by Bezdek.7 It has been widely utilized in pattern recognition, but its
application in hyperspectral image classification is rare. The algorithm for FCM is based on
minimization of an objective function:

Jm ¼
XN
i¼1

XM
j¼1

umij

���xi − cij
���2; 1 ≤ m < ∞; (4)

wherem is the exponential weight that controls the degree of fuzziness of the clusters (and can be
set as any real number greater than 1), xi and cij are the same parameters as in Eq. (1), uij is the
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fuzzy membership of xi in the j’th cluster, N is the dimensionality of x, M is the total number of
clusters, the same as the parameters in SOM, and jj � jj is any norm expressing the similarity
between an input vector and the prototype vector. The process of fuzzy clustering is carried out
via an iterative optimization for the objective function [Eq. (4)]. FCM updates membership uij
and prototype cij by

uij ¼
�XM

k¼1

�kxi − cijk
kxi − cikk

� 2
m−1

�−1

: (5)

cij ¼
P

N
i¼1 u

m
ij xiP

N
i¼1 u

m
ij

: (6)

FCM requires setting an appropriate value for m, an important parameter depicting the fuzzi-
ness of the system. Ifm is small (e.g., close to 1), FCM tends to produce almost crisp vectors, and
only the winner prototype is updated, leading to a process similar to SOM. If m is big (e.g., >7),
FCM becomes fuzzy and updates every prototype to a very small extent. To achieve a satisfac-
tory result, neither very small nor very big values ofm are desirable.16 Similarly, cij or uij needs to
be initialized, because they determine the speed of convergence and its outcome. FCM does
not explicitly consider the data dispersion of each cluster, although it does model the global
geometric structure of the data. For FCM, the membership uij needs to be calculated for all
the learning samples in each run, which may cause tremendous computation times when
used to process hyperspectral data.

2.3 DFLVQ

DFLVQ was developed by Tsao et al.8 to improve the performance of SOM and FCM. It was
proposed to combine the hard Kohonen’s SOM and the soft FCM algorithms. In DFLVQ, the
learning rate η in SOM is renamed as α and is calculated as a function of the fuzzy membership
uij in FCM as

αij;t ¼ ðuij;tÞmt ; (7)

where uij;t and mt are the same parameters as uij and m, respectively, as defined in the FCM
algorithm [see Eq. (5)]. The subscript t refers to the current accumulated learning cycle. The
updating strategy for the weights is revised as:

cij;t ¼ cij;t−1 þ
PN

i¼1 αij;tðxi − cij;t−1ÞPN
i¼1 αij;t

: (8)

We can see that in DFLVQ, the learning rule depends not only on the distance between the
input spectral vector and the prototype, but also the learning rate that is adjusted over time with
mt. A larger mt leads to a lower learning rate, whereas a smaller mt results in a higher learning
rate. Thus, it is preferable to vary mt in order to control the amount of fuzziness by adjusting it
from a larger initial value (m0) to a smaller final one (mf ) using a simple linear function decreas-
ing with time. Hence, this method is referred to as DFLVQ in the literature. This improved
algorithm not only adjusts the learning rate but also updates all neighborhoods with time,
thus achieving a good balance between SOM and FCM. However, it is often criticized be-
cause of the difficulty in setting the right range for m and the appropriate initial values for
cij, which may severely influence the computation cost and results. Again, this method does
not consider data dispersion within each cluster explicitly, and it is computationally very inten-
sive. Consequently, practical applications of DFLVQ in hyperspectral image classification are
very limited.
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3 GFSOM

As mentioned above, SOM, FCM, and DFLVQ only model the center of a cluster without expli-
citly considering the dispersion of data within the cluster in the learning procedure. To address
this problem, we propose a neuro-fuzzy system that utilizes the Gaussian membership function
to fuzzify the SOM neural network, which leads to a fuzzy GFSOM system. The development of
this unsupervised GFSOM was inspired by its counterpart, the supervised fuzzy learning vector
quantization GFLVQ,2 which was first developed by Qiu and Jensen17 in an attempt to open the
black box of neural systems in multispectral image classification.

The structure of the GFSOM system is similar to that of Kohonen’s SOM. It has two layers:
the input layer and the competitive layer, also known as the output layer (Fig. 1). The neurons in
the input layer correspond to all the hyperspectral bands of an input pixel, and the number of
output neurons is associated with the number of resulting clusters defined by users. In addition to
these fundamental components of the SOM neural network, the GFSOM system has four
further components: system initialization, fuzzification, neuro-fuzzy learning, and clustering
and defuzzification.

3.1 System Initialization

3.1.1 Selection of learning samples

Unsupervised classification searches for natural groupings of spectral properties of input
pixels. The selection of the input pixels used as learning samples is critical for the performance
of unsupervised AI-based approaches to hyperspectral image classification. For multispectral
image classifications, the unsupervised methods often use all the pixels of an image scene
as the learning samples. This strategy may be feasible for small hyperspectral images but is
unlikely to succeed when processing regular hyperspectral images with hundreds of bands.
Even if it succeeds, the learning procedure is likely to be extremely time-consuming for
these types of images. The use of all the pixels as learning samples may also encounter problems
due to spatial autocorrelation, which can lead to an overestimation of the contrast between
categories.20 Tubbs and Coverly21 suggest that classification algorithms need to be modified
in order to take into account the problems caused by the spatial autocorrelation structure
of homogenous samples. To avoid such problems, Craig22 recommends sample pixels no
closer than every 10th pixel for accuracy assessment. Therefore, using all pixels as learning
samples is not only inefficient but also theoretically problematic for clustering hyperspectral
images.

To address this problem, we propose a random sampling scheme (RSS) to select learning
samples during the learning iteration for GFSOM, a method that can also be used by the other

Fig. 1 The topological structure of the GFSOM system.
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three AI-based unsupervised classifiers for hyperspectral images. With the RSS method, an input
image is randomly sampled based on a user-defined number. This number, representing the num-
ber of pixels to be randomly selected, is set depending on the number of output clusters, the size
of an input image, and the degree of spatial autocorrelation existing among the input pixels. One
case study illustrated that a hyperspectral image with 160,000 pixels and 112 spectral bands only
needs approximately 1000 randomly selected learning pixels to generate eight stable clusters. In
each iterative learning step, the randomly selected pixels are used to update the weights of the
AI-based classifiers. This proposed RSS method can greatly improve the efficiency of the
learning process and reduce the spatial autocorrelation among the learning data.

3.1.2 Initialization of the prototypes

As with SOM, FCM, and DFLVQ, prototypes (cij) need to be initialized before the self-learning
starts. Random assignment of prototypes is often used by the existing AI-based approaches to
multispectral image classification. In SOM and GFSOM, a winner will be determined for each
input learning sample. When the random assignment of prototype is used, the first winner will
always be the winner, because the spectral profiles of other prototypes are still random. This
leads to the learning procedure completely failing. For FCM and DFLVQ, starting from random
spectral profiles of the prototypes may cause the learning procedure to be extremely slow. Thus,
we propose a scheme for generating initial prototypes from the selected learning samples. This
initialization strategy is based on a simplified K-mean scheme (SKS) and involves several steps.
The first step is to randomly select initial prototypes from the first M learning samples. The
second step is to classify the remaining learning samples to the closest prototype to form clusters.
The last step is to calculate the new prototypes based on the samples assigned to individual
clusters. The SKS is different from K-mean clustering, because it needs neither to cluster all
of the pixels of an image nor to iterate over multiple passes. The prototypes derived from
this SKS approach can then be used as the initial prototypes for GFSOM. Similarly, this scheme
can also be adopted by SOM, FCM, and DFLVQ to classify hyperspectral images.

In GFSOM, it is also necessary to initialize the standard deviations that measure the disper-
sion of data within a cluster, a parameter lacking from the other three AI-based unsupervised
classifiers. The initial value for this parameter can be calculated by applying the normal standard
deviation equation to the initial value of a prototype (as the mean) and the values of the selected
learning samples assigned to its related cluster. Finally, prior to running the learning procedure,
all the pixel values of the selected learning samples and the original input image need to be
normalized to [0, 1] as in the SOM neural network.

3.2 Fuzzification

Since the input pixel values fed into the GFSOM system are not fuzzy numbers, they must be
converted into a set of fuzzy numbers through a fuzzification process. The fuzzification of a pixel
value of a single band is based on the Gaussian fuzzy membership function:

uij ¼ e
−
ðxi−cijÞ2
2×σ2

ij ; (9)

where uij is the fuzzy membership grade, cij is the mean parameter of the Gaussian function,
corresponding to the center of the j’th cluster of the i’th band, xi is the i’th input variable (i.e., the
pixel value for the i’th band) of the input learning pixel, and σij represents the Gaussian standard
deviation parameter characterizing dispersion of data in the cluster. The parameters uij, cij, xi, i,
and j are the same parameters as in FCM and DFLVQ. The GFSOM system uses the derived
fuzzy membership grade, rather than the Euclidean distance, as a relative distance to determine
the closeness of the input pixel to a cluster prototype. This fuzzification process models the
spectral properties of input data not only by capturing their center tendency characteristics
but also by modeling their data dispersion distinctiveness. The values cij and σij are initialized
using the proposed prototype initialization system. Only the selected learning samples are
entered into the learning iterations.
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Equation (9) can only be used to determine the fuzzy membership grade of one band for an
input pixel. For hyperspectral data, to assign a pixel to a particular cluster, all the bands of this
pixel need to be considered. To achieve this, an and-or fuzzy operator in the form of the geo-
metric mean is utilized, so that an overall membership grade for this pixel can be obtained as:

αj ¼
8<
:
YN
i¼1

e
−
h
ðxi−cijÞ2
2×σij

i9=
;

1
N

; (10)

where αj refers to the overall membership grade of the input pixel concerning the j’th output
cluster, N refers to the number of input neurons (i.e., image bands), and cij, xi, i, j, and σij are
the same as in Eq. (9). This is referred to as the and-or fuzzy operator, because it sits between
the fuzzy and (intersection) and the fuzzy or (union) operators. As an averaging operator, it
allows a low membership grade in one band to be compensated for by a high membership
grade in another band, so that a missing or noisy value in one band will not heavily affect
the clustering output of the entire pixel. In addition, the and-or operator is an “idempotent”
function, such that and-or ða; a; : : : ; aÞ ¼ a, which delivers a more reasonable final membership
grade. The winner is then assigned to the output neuron with the maximum overall member-
ship grade.

3.3 Neuro-Fuzzy Learning

GFSOM performs fuzzy partitioning of the input vector based on competitive learning as in
SOM, but unlike the original SOM that searches only the center of each cluster, GFSOM
seeks to learn both the center of a cluster and the average deviation from the center of this cluster
based on the pixels assigned to it. Thus, the parameters cij and σij in the Gaussian membership
function are used in conjunction to determine the “winner” output neuron. The GFSOM updates
both parameters for the output neuron. Unlike the supervised system, where these two para-
meters are updated based on the true target class information provided by the training data
and the competition result, the unsupervised learning of GFSOM has to rely solely on the
competition outcome. The fuzzy competitive learning for these two parameters in GFSOM
is as follows:

Δcij ¼ ηðxi − cijÞ; if the j ’th output neuron is the winner; (11)

Δcij ¼ 0; otherwise: (12)

Δσij ¼ ηðjxi − cijj − σijÞ; if the j ’th output neuron is the winner; (13)

Δσij ¼ 0; otherwise: (14)

The updating rule for cij is the same as that used in SOM [see Eqs. (2) and (3)]. However,
additional updating rules for the standard deviation weights were created [Eqs. (13) and (14)].
When the absolute deviation of the input pattern xi from the center of the matched cluster (cen-
tered at cij) is larger than the current standard deviation σij of the cluster, the standard deviation
weight will be increased by η portion of the difference. If the absolute deviation is smaller, then
the standard deviation will be decreased by that small portion of the difference. No update is
needed if they are the same. This ensures that the size of the cluster will be shrunk or enlarged
adaptively based on the deviations of the matched input patterns from the cluster center.
The updating rule for the standard deviation works well both in the supervised GFLVQ and
unsupervised GFSOM systems.

3.4 Clustering and Defuzzification

When the centers (cij) and standard deviations (σij) of all clusters have been fine tuned in the
learning procedure, they can then be directly used to cluster all the pixels of the input image.
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For a hard clustering algorithm, the result is a single clustering map where each pixel is assigned
to only one cluster. The output of the GFSOM system, however, is fuzzy membership grades for
all clusters, affording much richer information that can be used to estimate various constituents
found in a mixed pixel.1 If a hard clustering map is desired, defuzzification, a reverse of the
fuzzification process, can be used to convert various fuzzy membership grades to a single cluster
for each pixel. Defuzzification is achieved by comparing a pixel’s membership grades for all
clusters and then assigning the pixel to the cluster with the maximum membership grade. A final
thematic map is obtained through visually labeling the clusters into land use/land cover classes,
as with other unsupervised classification approaches.

4 Case Study

The proposed GFSOM and the other three AI-based unsupervised classifiers (SOM, FCM, and
DFLVQ) were used to classify a subset of a Hyperion image acquired in Wuxi, China (centered
at þ31°33′10.80″, þ120°9′54.00″) on August 19, 2004. This subset image has a total of
400 × 400 pixels. Hyperion is a push broom, hyperspectral imaging spectrometer on board
the Earth-Observing 1 (EO-1) spacecraft. Unlike widely used airborne hyperspectral instru-
ments, Hyperion is a satellite sensor system with a coarse spatial resolution of 30 × 30 m.
There are 242 unique spectral channels with a bandwidth of 10 nm for each band in the visi-
ble/near infrared (VNIR) spectral region (400 to 1000 nm) and short-wave infrared (SWIR)
region (900 to 2500 nm). Due to the fact that some channels have low signal strengths, and
others fall into an overlap region between VNIR and SWIR, only 196 valid bands are available
for use. To alleviate the collinearity problem, we selected most of the calibrated VNIR bands and
discarded the overlapped SWIR bands. A uniform feature design (UFD) was then applied as
suggested by Filippi and Jensen13 to reduce the dimensionality of the data set while retaining
as much spectral shape information as possible in the SWIR range, resulting in 112 bands being
used for the subsequent analysis. A VNIR color composite map of the study area is shown in
Fig. 2(a) with a band combination of 993, 603, and 711 nm. Four land cover types at level I of the
USGS Classification System23 were identified in this image, including urban/built-up, agricul-
ture, forest, and water. We also randomly collected 491 validating pixels (130 for urban, 118 for
agriculture, 124 for forest, and 119 for water), which were used as references for accuracy assess-
ment purposes.

Successful applications of AI-based classifiers in remote sensing largely depend on the set-
ting of appropriate parameters. The common parameters that need to be set for GFSOM and the
other three AI classifiers include the number of learning cycles (i.e., iterations), number of input
neurons (i.e., input bands), number of output neurons (i.e., clusters), number of learning samples,
and initial values of the prototypes (cij). To ensure comparability of results, these parameters
should be kept consistent across the four classifiers. Several tests were conducted in order
to obtain the optimal settings of these parameters. In this case study, the outputs were obtained
by setting the number of learning iterations to 100, the number of input neurons equal to the
number of image bands (112 in this case), the number of output neurons to eight, and the number
of randomly selected learning samples in each iterative step to 1000. Aside from these common
parameters, other parameters that are unique to each classifier also need to be specified. In SOM
and GFSOM, the learning rate (η) was set to decrease monotonically with time from 0.5 to 0.05,
following the first Kohonen heuristic rule. This range was empirically determined based on
experiments. A large value for the learning rate makes the algorithm unstable, while a small
value takes a long time to converge. This adaptive learning rate keeps the learning step size
as large as possible, while keeping the learning procedure as stable as possible.24 In FCM
and DFLVQ, setting the exponential weight (m) appropriately is critical for the successful
use of these two algorithms. For FCM, most users suggest a value in the range of 1.1 to 5
to yield a suitable interpretation. In this case study, a value of 3 for m generated the best results.
For DFLVQ, a varying m approach was adopted with a range of 1.1 to 7.0, as suggested by
Bezdek and Pal.16 All the parameters initialized for each classifier are summarized in Table 1.
Tests were conducted on a PC with a 3.4-GHz Pentium CPU and 1 GB of RAM. Once the
learning procedure achieves convergence, the whole image is then input into the system to
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be grouped into natural spectral clusters, which are finally transformed into classification maps
with four identified classes, as presented in Figs. 2(b)–2(e).

5 Results and Discussion

To evaluate the performance of the RSS strategy for learning sample selection, classification was
also attempted using all pixels (160,000) in the input image. Similarly, the random assignment

Fig. 2 (a) Hyperion image VNIR color composite map (R ¼ 993 nm, G ¼ 603 nm, B ¼ 711 nm);
(b–f) Classification results from various image classifiers (red ¼ urban, green ¼ forest,
yellow ¼ agriculture, blue ¼ water).
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approach to cij prototype initialization was also tested to evaluate the performance of the
proposed SKS approach.

The utilization of all the pixels from the input image caused all the AI classifiers to crash
before convergence, due to the large data volume of the image. This suggests that the use of all
pixels of hyperspectral images as learning samples is problematic for the AI-based unsupervised
classifiers. Conversely, all four classifiers were able to deliver desired results using a small
number of learning samples selected with the proposed RSS strategy. We found that for the
image in our case study with 160,000 pixels, we only needed to collect 1000 learning samples
to achieve stable learning outcomes. Therefore, the proposed RSS strategy for learning sample
selection is both an efficient and effective solution for AI-based unsupervised classification
of hyperspectral images.

The SOM and GFSOM algorithms also completely failed with a random initialization
approach. Although FCM and DFLVQ could converge, they took a longer time to do so. How-
ever, employing the proposed SKS approach to prototype initialization, SOM and GFSOM were
able to achieve convergence, while the convergence of FCM and DFLVQ was also substantially
faster. By combining the RSS learning sample selection strategy and SKS prototype initialization
system, all classifiers were able to produce desired clustering maps within seconds (Table 2).
SOM was the most efficient classifier and finished the self-learning process in 14 sec. GFSOM
took a little longer (20 sec) to complete the self-learning process but was faster than FCM and
DFLVQ, which took 35 and 33 sec, respectively.

Table 1 Parameter set for SOM, FCM, DFLVQ, and GFSOM in classifying an EO-1/Hyperion
hyperspectral image with 400 × 400 pixels and 112 bands.

Common parameters for all the classifiers

Number of input neurons 112

Number of output clusters 8

Number of learning cycles 100

Number of selected learning samples 1000

Initialization of prototypes (cij ) simplified K-mean scheme (SKM)

Parameters SOM

Initial learning rate 0.5

Final learning rate 0.05

Parameters FCM

Weighting exponent (m) 3

Parameters Descending FLVQ

Initial weighting exponent (m0) 1.1

Final weighting exponent (mf ) 7.0

Parameters GFSOM

Initial learning rate 0.5

Final learning rate 0.05

Table 2 Computational cost of each AI-based algorithm.

SOM FCM DFLVQ GFSOM

Total CPU (sec) 14 35 33 20

Note: The computer used has a 3.4 GHz Pentium processor with 1 GB RAM.

Zhang and Qiu: Hyperspectral image classification using an unsupervised neuro-fuzzy system

Journal of Applied Remote Sensing 063515-10 Vol. 6, 2012



For comparison purposes, the performance of the conventional unsupervised ISODATA
method was also evaluated, and the final classification map derived from this method is
shown in Fig. 2(f). The accuracy of the classifications from all the unsupervised classifiers
was assessed using the confusion matrix based on 491 randomly selected samples. The produ-
cer’s, user’s, and overall accuracy thus obtained are given in Table 3. Kappa coefficients were
also calculated for quantifying the classification accuracy. The Kappa coefficient (Khat) is
believed to be a better representation of the general quality of an image classification, because
it removes the effects caused by differences in sample size and accounts for the off-diagonal
elements in the error matrix.25 It also allows different classifications to be compared statisti-
cally.26 The results of these significance tests, which are based on the Z (Normal) distribution,
between GFSOM and the other classifiers using the Khat values are also shown in Table 3.
According to Fleiss,27 Kappa coefficients larger than 0.75 suggest strong agreement. Landis
and Koch28 suggest that Kappa coefficients larger than 0.81 indicate an almost perfect agree-
ment. Z-scores larger than 1.96 suggest that the two methods are significantly different at the
95% statistical confidence level.

Comparing the classification results, we can see that the best overall accuracy of 88.6% was
achieved by GFSOM with Kappa coefficient (Khat) of 0.85. DFLVQ obtained an overall accu-
racy of 83.5% with Kappa coefficient of 0.78. SOM produces the poorest result among the AI-
based methods with an overall accuracy of 73.1% and Kappa coefficient of 0.64, primarily
caused by the misclassification of the agriculture in the east side of the image as forest and
urban as water [Fig. 2(c)]. However, SOM could still produce an outcome better than ISODATA,
which has an overall accuracy of only 53.4% with Kappa coefficient of 0.38 [Fig. 2(f)]. This
confirms the conclusion in the literature that ISODATA is not appropriate for clustering hyper-
spectral data. The Z-tests indicate that the classification accuracy of GFSOM is significantly
better than all other unsupervised classifiers at a 95% confidence level.

When the producer’s and user’s accuracy are examined, all methods generate their best accu-
racy for the water class and obtain varying degrees of agreement for categorizing other classes.
Water is often the easiest feature to classify in remotely sensed images, due to the homogeneous
nature of most water surfaces. Urban is a difficult category to identify, because of its spatial
heterogeneity, resulting in larger data dispersion within this class. GFSOM achieved the best
accuracy for identifying the urban class among these methods, owing to its capability to capture
the dispersion of data within a class. It obtained comparable accuracy to FCM and DFLVQ for
categorizing forest and agriculture classes, which have relatively homogeneous spatial patterns.

Using the proposed approaches for selecting learning samples and initializing prototypes,
all AI-based classifiers were able to complete the learning and clustering process within a
short period of time. As a result, the computational efficiency would not be a problem for
these AI-based unsupervised classifiers in classifying hyperspectral images. In our experiment,
SOM achieved the best computational efficiency, due to its simple learning process, but it had the

Table 3 Results of accuracy assessment for each algorithm.

SOM FCM DFLVQ GFSOM ISODATA

PA UA PA UA PA UA PA UA PA UA

Urban 66.2 96.6 40.7 88.9 97.7 82.5 98.5 86.5 11.5 16.5

Forest 85.4 59.9 87.9 60.6 75.8 70.7 72.6 85.7 61.9 89.0

Agriculture 40.7 84.2 93.9 89.0 66.1 83.9 83.5 84.5 44.4 44.0

Water 100 70.8 99.2 98.3 93.2 100 100 97.5 100 61.7

Overall accuracy (%) 73.1 80.9 83.5 88.6 53.4

Kappa coefficient 0.64 0.74 0.78 0.85 0.38

Z -score 6.38 3.45 2.33 13.33

Note: PA, producer’s accuracy (%); UA, user’s accuracy (%).
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lowest classification accuracy among all AI-based classifiers. As a hard classification algorithm,
SOM does not have the capability to provide the rich membership information of a fuzzy
classifier1 such as FCM, DFLVQ, and GFSOM. Although FCM is a popular fuzzy classifier
for multispectral data analysis, to the best of our knowledge, this study is the first to explore
its applicability for hyperspectral image processing. By adopting the proposed learning sample
selection and prototype initialization approaches, it has been shown to be applicable to hyper-
spectral data. Nevertheless, for FCM and DFLVQ, a critical issue is still the choice of an appro-
priate weighting exponent m, which can take any values in the range ð1;∞Þ. A varying m
approach was adopted in the DFLVQ algorithm used in this case study, but its range is
still difficult to determine. In contrast, GFSOM, as a fuzzy neural network relying on the Gaus-
sian membership function adaptively learning from sampling data, does not suffer from the pro-
blem of choosing an appropriate value for parameter m to determine its fuzziness. Further,
the learning algorithms of SOM, FCM, and DFLVQ all model the central tendency of the indi-
vidual clusters without considering the data dispersion within each cluster. GFSOM, on the con-
trary, captures both the typicality of the input vectors and the atypicality of the data within a
cluster using fuzzy competitive learning, which enables it to achieve the best accuracy among
all the tested unsupervised classifiers. It is also the most computationally efficient classifier,
since it only updates the winners in the learning iterations.

6 Summary

We proposed an unsupervised GFSOM classifier for hyperspectral image analysis with the pur-
pose of solving the various problems inherent in the three standard AI-based approaches: SOM,
FCM, and DFLVQ. These three methods have been primarily employed for multispectral image
analysis with limited hyperspectral application. We thus additionally explored the potential of
these techniques for hyperspectral image processing. To apply these AI-based methods effec-
tively and efficiently, we developed a learning sample selection strategy and prototype initializa-
tion process. A case study in classifying an EO-1/Hyperion image illustrated that the proposed
GFSOM achieved the best classification result among the unsupervised classifiers tested, owing
to its ability to model explicitly not only the center tendency of data groups, but also the data
dispersion characteristics within the groups. The results also demonstrate that all the AI-based
techniques have the capability to classify hyperspectral images if they adopt the learning sample
selection strategy and prototype initialization process developed for GFSOM.

It is instructive to note that our proposed method achieved the best accuracy in this case study,
but this does not imply the ultimate superiority of this technique over the other approaches under
all circumstances. The fact that different parameters are required for different approaches does
not really make them comparable in a strict sense. Similar to other classification approaches, the
accuracy of GFSOM heavily depends on the number of classes to be identified, the degree of
spatial heterogeneity of the image, and the associated parameters specified. The results obtained
here are certainly encouraging, but further research is needed using images with more land
use/cover types, as well as different spatial and spectral resolutions in order to confirm the
robustness and extensibility of this method.
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