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ABSTRACT. Gray code assisted phase shifting technology can achieve robust and noise-toler-
ated three-dimensional (3D) shape measurements. To solve the issues of
unsynchronized brightness changes, local overexposure, and edge coding errors
caused by inconsistent reflectivity of the surface in complex industrial scenes, as
well as defocusing caused by noncontinuous surfaces and varying distances, we
combine the advantages of a large imaging range in passive stereo vision and high
precision in active structured light imaging. It uses a consumer-grade projector to
project gray code and stripe patterns, whereas two precalibrated color industrial
cameras capture raw images and obtain the original channel data. Gray code and
reverse gray code images are projected to solve the problems of binarization and
boundary blur. In addition, an error point filtering strategy is proposed to retain pixels
with decoding errors of less than two bits. The use of softargmin for subpixel match-
ing of absolute phase results in a high precision disparity map. We present a simple
and high precision 3D measurement system for industrial objects. Experiments on
3D measurements in complex industrial scenes showed that the proposed method
can achieve high precision and robust 3D shape measurements.
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1 Introduction
Optical 3D measurement technology has the advantages of being noncontact, having high pre-
cision and fast speed, and being applicable to static and dynamic measurements; it is widely used
in fields such as machine vision, industrial inspection, biometrics, and reverse engineering.1–4

Binocular vision and structured light are important methods of optical 3D measurement
technology.

Binocular stereo vision5 uses the matching of corresponding points of scenes captured by
two cameras at different angles to obtain the disparity and then converts it into the 3D informa-
tion of the scene. Although the corresponding points must be on the epipolar line, the two images
can be matched by defining the similarity of the window and sliding the window to find the
corresponding points.6 The horizontal pixel difference between the two corresponding points
is called the disparity. Binocular matching depends on the texture information and surface fea-
tures of the corresponding points, which limits the dense and accurate reconstruction of the real
3D scene with less texture.
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Structured light replaces one of the cameras with a projector and projects sinusoidal fringes
or gray codes onto the tested object. The camera captures the deformed pattern modulated by the
object’s height, and the depth information is calculated based on the principle of triangulation.7

The gray code algorithm is simple and robust, but it requires the projection of multiple frames of
coded patterns. The stripe projection has a high spatial resolution, but the phase obtained by the
phase shifting algorithm is between ð−π; πÞ, which needs phase unwrapping. The spatial
unwrapping algorithm is only suitable for flat surfaces, whereas the temperal unwrapping algo-
rithm requires the projection of more patterns. Both algorithms have limitations and difficulty
meeting the real-time measurement requirements.8,9

In addition, both the binocular vision and structured light methods are susceptible to the
surface reflectivity of the tested object and ambient light. The dense reconstruction of objects
in complex lighting conditions has gradually become a research hotspot.10–12

Sun et al.13 used gray code assisted phase shifting technology and the additional projection
of a complementary gray code pattern to use the two decoding results to correct the error position
and solve the problems of false edges and mismatched wrapped phase. However, this method is
not suitable for scenes with inconsistent reflectivity. Wu et al. re-encoded traditional gray codes
in the time and space domains and used cyclic complementary gray codes14 and moving gray
codes,15 combined with binary defocusing phase shifting technology, to achieve high-speed
dynamic measurement of a fan and falling blocks. However, the defocusing technology limits
the application of noncontinuous surfaces in industrial scenes and reduces the precision in the Z
direction. The robustness of this method in complex scenes also needs to be verified. Lohry
et al.16 used a binocular structured light method, first using binocular stereo matching to obtain
a rough disparity map and then using locally wrapped phase information to further refine the
disparity map for higher precision. However, the signal-to-noise ratio is low when measuring
steep surfaces, and there are large shadowed areas, which cannot meet the measurement require-
ments of industrial scenes. Lu et al.17 also proposed a method based on phase shifting profil-
ometry and stereo vision measurement systems. They used constraints from matched raw images
to obtain a rough disparity and used subpixel disparity optimization to reduce matching errors.
However, the process of matching wrapped phases is easily affected by inconsistent reflection in
the scene, and it is difficult to perform filtering, making it challenging to achieve 3D imaging in
complex scene. Yu et al.18 added a set of low-frequency fringes on top of gray code assisted phase
shifting technology, effectively correcting the period jump error of the stripes and allowing for
the measurement of surfaces with drastic height changes. However, in scenes with a large depth
of field, the imaging precision often decreases for objects that are not in the focal plane. Hu
et al.19 used the high dynamic range imaging surface 3D measurement method based on adaptive
stripe projection to dynamically adjust the brightness of the projected stripes by establishing
coordinate mapping between the camera and the projector. The surface highlights of complex
watch parts and mobile phone parts are avoided, and high-quality point clouds are obtained.
Chen et al.20 used the sampling moiré fringe method based on binocular vision to improve the
speed of phase matching. The fixed-point iterative method solved the problem of large defor-
mations caused by uneven grating distribution in 3D measurements, allowing for the measure-
ment of Poisson’s ratio during the deformation of a stretched cylinder. Yuan et al.21 established
the optimal projection strategy and the coordinate mapping between the camera and the projec-
tion and combined it with the response function of the local camera. They used a binary search
method to determine the optimal projection brightness in the overexposed area, effectively avoid-
ing the phase error and enabling an accurate measurement of metal workpieces and metal plates.
Engel22 summarized various 3D measurement methods, among which the binocular structured
light method uses gray code assisted phase shifting technology and stereo matching based on the
absolute phase of the left and right images. It is not affected by the color and texture information
of the measured object’s surface and is less affected by ambient light. The phase solved by the left
and right cameras only contains the height information of the object, resulting in higher matching
precision and a shorter processing time, making it suitable for 3D imaging in complex industrial
scenes.

The methods proposed in the above literature often achieve 3D measurements of simple
objects under laboratory settings with good lighting conditions, and there are many limitations
in extending them to industrial scenes. Our approach focuses on monitoring and maintenance of
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critical components of high-speed rails, such as measuring the wheel size, detecting the missing
bolts, identifying damage and missing parts in pipelines, and assisting with the positioning of
mechanical arms, as well as detecting pantographs and lifting arms. Each of these tasks has
different requirements for the range, precision, and speed of 3D measurement. The imaging
scenes in this paper are more diverse, with significant variations in surface reflectivity and more
complex lighting conditions, which place higher demands on the imaging accuracy and robust-
ness of our proposed method.

This paper optimizes multiple key steps of binocular structured light imaging. To address the
issue of the lower image quality of color cameras compared with black and white cameras, raw
images are captured to improve the image quality. To tackle the challenges of complex lighting
conditions, large measurement range, and long depth of field in industrial scenes, gray codes and
inverse gray codes are used for projection, and an error point filtering strategy is proposed to
effectively select the masked region, thereby improving the system’s robustness. The use of sub-
pixel stereo matching results in refined disparity values, achieving 3D reconstruction of large
scenes. Experimental results demonstrate the strong robustness and high precision of the pro-
posed method in complex industrial scenes.

2 Principle

2.1 Phase Shifting Profilometry
Figure 1 shows the basic process of 3D reconstruction using stereo structured light. This section
will provide a brief introduction to the key principles involved.

Phase shifting profilometry23 projects N(N ≥ 3) sinusoidal stripe patterns with equal phase
shifts within one cycle onto the surface of the measured object, and the camera captures the
deformed fringes to accurately solve the phase information modulated by the height of the mea-
sured object’s surface. The five-step phase-shifting algorithm is used in this paper, and the cap-
tured images are represented as

EQ-TARGET;temp:intralink-;e001;117;412Inðu; vÞ ¼ Aðu; vÞ þ Bðu; vÞ cos½φðu; vÞ þ δn�; (1)

EQ-TARGET;temp:intralink-;e002;117;377δn ¼ 2π ·
ðn − 1Þ

N
ðn ≤ NÞ; (2)

where Aðu; vÞ is the background light intensity, Bðu; vÞ is the modulation, φðu; vÞ is the phase
modulated by the height information of the object, and δn is the phase shift amount. The cor-
responding wrapped phase expression is

EQ-TARGET;temp:intralink-;e003;117;324φðu; vÞ ¼ arctan

P
N
n¼1 Inðu; vÞ sin δnP
N
n¼1 Inðu; vÞ cos δn

; (3)

where the wrapped phase is calculated using the four-quadrant inverse tangent function and the
phase φðu; vÞ is truncated between ð−π; πÞ and needs to be unwrapped to restore a continuous
phase. Gray code assisted phase unwrapping is used in this paper because it is fast and simple and
does not suffer from error propagation.

The gray code method uses a set of binary coded gratings to mark the sinusoidal patterns,
with M gray codes marking 2M fringe cycles. The distribution of 4-bit gray code words, for
example, is shown in Fig. 2.

Fig. 1 Basic process of the binocular structured light.
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In Fig. 2, GC1, GC2, GC3, and GC4 represent the horizontal gray values of the four pro-
jected gray code patterns, with 0 indicating a gray value of 0 and 1 representing a gray value of
255. k represents the order of each gray code. Decoding gray codes first requires binarizing the
captured images, with the binarization threshold determined by the average of the five captured
stripe images, which is given as

EQ-TARGET;temp:intralink-;e004;114;557HðnÞ ¼ 1

5

X5

i¼1

IiðnÞ; (4)

where HðnÞ is the binarization threshold for a single pixel and IiðnÞ is the grayscale value when
projecting sinusoidal fringes.

The conversion between gray code and binary code is given by

EQ-TARGET;temp:intralink-;e005;114;479BðnÞ ¼ −Bðnþ 1Þ XOR GðnÞ; (5)

where BðnÞ is the n’th bit of the gray code, Bðnþ 1Þ is the (nþ 1)’th bit of the binary code, and
XOR is the exclusive OR operation.

The absolute phase of the left and right images is determined by

EQ-TARGET;temp:intralink-;e006;114;419Φðu; vÞ ¼ φðu; vÞ þ 2πkðu; vÞ; (6)

where Φðu; vÞ is the absolute phase, φðu; vÞ is the wrapped phase calculated by Eq. (3), and k is
the decimal gray code level.

2.2 Binocular Stereo Vision
After calibration of the binocular cameras, the diagonal camera is simplified to a parallel camera
as shown in Fig. 3, where Ol and Or represent the optical centers of the left and right cameras,
respectively; xl and xr represent the pixel projections of point p in space onto the left and right
cameras, respectively; T is the baseline distance between the left and right cameras; and f is the
camera’s focal length. The depth Z of the point p in space is obtained from the following
equation:24

Fig. 3 Schematic diagram of the binocular stereo vision.

GC1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

GC2 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0

GC3 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0

GC4 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 2 4-bit Gray code word distribution diagram.
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EQ-TARGET;temp:intralink-;e007;117;736Z ¼ T · f
xl − xr

¼ T · f
d

: (7)

Equation (7) is derived from a simple similar triangle, where d is the disparity.
After performing epipolar line correction on the absolute phase of the left and right images,

the disparity is determined by

EQ-TARGET;temp:intralink-;e008;117;671eðu; v; dÞ ¼ minfjIlðu; vÞ − Irðuþ d; vÞj;maxdispg; (8)

where e represents the disparity of each point in the left image; Il and Ir represent the pixel values
of the left and right images, respectively; and maxdisp is the estimated disparity value.

The absolute phase calculated by Eq. (6) is a double-precision floating point value, which
allows for subpixel matching. After finding the integer pixel of the disparity shift,25 linear inter-
polation is usually used to calculate the exact disparity as shown in Fig. 4

EQ-TARGET;temp:intralink-;e009;117;588Δτ ¼ Φlðu; vÞ −Φrðuþ τ; vÞ
Φrðuþ τ þ 1; vÞ −Φrðuþ τ; vÞ ; (9)

where ΦðνÞ represents the absolute phase of the epipolar line ν; Δτ represents the subpixel dis-
parity shift along the line; and the superscripts l and r indicate the left and right cameras,
respectively.

Finally, the disparity map dðu; vÞ is obtained as

EQ-TARGET;temp:intralink-;e010;117;502dðu; vÞ ¼ eðu; v; dÞ þ Δτ: (10)

With the disparity map, the 3D information of the measured object is obtained using the
calibrated camera parameters.

3 Improved Method

3.1 Error Point Filtering Strategy
The consumer-grade projector that we used has a lateral resolution of 1280 and requires at least
210 pixels for encoding. To achieve a stripe projection with a period of 16 pixels, this paper uses
7-bit gray code and five-step phase-shifting stripe patterns, as shown in Fig. 5. Seven additional
black and white reverse gray code patterns are also projected for an error point filtering strategy.

The usual approach to solving the problem of level edge code errors is to use complementary
gray code. However, due to the ambient light, different surface reflectivity of objects, and inter-
ference between projected lights in complex industrial scenes, there may be some areas where the
projected bright fringes are darker than the dark fringes. Meanwhile, the captured intensities
seldom change in the areas far away in the scene. In addition, the defocusing caused by non-
continuous surfaces also increases the difficulty of decoding the gray code and solving for the
continuous phase. In this situation, the use of the complementary gray code is no longer
applicable.

To solve these special issues, we project both gray code patterns and reverse gray code
patterns onto the scene and then decode using the corresponding two sets of images.

:
:

Fig. 4 Schematic diagram of the subpixel interpolation.
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The threshold in Eq. (4) is used for binarization. Only the gray code decoding values of a
pixel that satisfy Eq. (9) are considered reliable:

EQ-TARGET;temp:intralink-;e011;114;275jIðu; vÞþ − Iðu; vÞ−j > 15; (11)

where Iðu; vÞþ is the pixel grayscale value of the captured gray code pattern and Iðu; vÞ− is the
pixel grayscale value of the projected reverse gray code pattern. We need to perform seven checks
for Eq. (9) on each pixel. This allows us to determine the number of incorrect bits for each pixel
when solving the 7-bit gray code.

The decoding method using an error point filtering strategy is shown in Fig. 6. We first need
to synchronously collect the gray code and stripe patterns modulated by the scene to be tested, as
shown in Fig. 6(a). The number of incorrect bits during the decoding process is mapped, as
shown in Fig. 6(b). The pixel values in this image represent the reliability of the current code
value. Fig. 6(c) shows a partial enlarged view of Fig. 6(b), with most of the pixels having <2
incorrect bits. We consider pixels with more than two decoding errors to be unreliable and
remove them by adding a mask, as shown in Fig. 6(d).

3.2 Subpixel Stereo Matching
The traditional subpixel interpolation method relies on the monotonic distribution of adjacent
pixel values, which is not applicable in high-noise scenes. The resolution of the projector is
usually lower than that of the camera, which may result in three pixels corresponding to the

(a) (b)

(c) (d)

Fig. 6 Decoding of the image sequence on the side of the train axle: (a) raw image of the side of
the train axle, (b) error code statistics of 7-bit gray code, (c) local enlarged view, and (d) mask.

(a) (b) (c)

Fig. 5 Projected patterns: (a) gray code patterns, (b) reverse gray code patterns, and (c) stripe
patterns.
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same gray code order during the decoding process. Although these pixels have different wrapped
phases, the absolute phase difference between pixels with the same order is less than 2π. This can
lead to incorrect matches during disparity calculation and cause clustering in the 3D point cloud.
Therefore, we first need to calculate the absolute phase distribution of pixels with the same gray
code order and then consider how to obtain the subpixel disparity.

The softargmin function was proposed by GC-Net26 to solve the problem of discrete dis-
parity in stereo matching, which cannot be used for subpixel estimation and differentiation with
the argmin operation, making it impossible to backpropagate. The cost of calculating the absolute
phase in this paper is a unimodal distribution, making it feasible to use the softargmin function to
solve for subpixel disparity:

EQ-TARGET;temp:intralink-;e012;117;616softargmin ¼
XDmax

d¼0

d × σð−cdÞ; (12)

where softargmin is the weighted sum of the disparity value d, cd is the cost value for each
disparity d, and σ is the softmax function, which is used to convert inputs into probability values.

4 Results and Discussion
The experimental setup includes a consumer-grade projector (XGIMI Z6X) and a color industrial
camera (Basler ace acA1920-40gc). The used projector has a severe nonlinear response and poor
contrast. Therefore, we employed the five-frame phase-shifting algorithm to reduce higher-order
harmonic components and suppress the nonlinear response. The projector has a resolution of
1280 pixels × 720 pixels, and the camera has a resolution of 1920 pixels × 1200 pixels. The
projected fringe period is 16, the baseline of the binocular camera is 165 mm, and the lens focal
length is 12 mm. The measurement distance is 0.5 to 1.5 m.

4.1 Standard Sphere Precision Verification Experiment
To demonstrate the effectiveness of the proposed method in improving precision, a traditional
binocular structured light method27 and the proposed method are used to measure a standard
sphere and a comparison and precision evaluation is performed.

The measurement results of standard sphere are shown in Fig. 7. Figure 7(a) represents the
raw image of the standard sphere captured by the left camera, Fig. 7(b) represents the disparity

(a) (b)

(c) (d)

Fig. 7 Standard sphere experiment for the proposed method in this paper: (a) raw image of the
standard sphere, (b) disparity map of the standard sphere, (c) point cloud of the standard sphere,
and (d) fitted standard sphere.
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map of the standard sphere, Fig. 7(c) represents the point cloud obtained by the improved
method, and Fig. 7(d) represents the fitted standard sphere.

The scene is surrounded by a black curtain, but the proposed method can still recover the 3D
information of the curtain from this dark environment, demonstrating its strong robustness. In
Table 1, the precision of the proposed method in measuring the standard sphere is around
0.03 mm with a measurement error of 0.5 mm for the distance between the sphere centers, which
is slightly lower than other experiments. This is due to using a low-cost consumer-grade pro-
jector, which has a much lower linearity and uniformity compared with industrial projectors.
Additionally, the distance between the standard sphere and the camera is 500 mm, which means
that one pixel on the camera represents ∼0.3 mm in space. Achieving a measurement precision of
0.03 mm demonstrates the subpixel matching capability of our method. It is possible to signifi-
cantly improve this metric using better equipment.

4.2 Comparison Experiment in Various Industrial Scenarios

4.2.1 Comparison experiment in a nonuniform reflectance scene

The measurement results of the train wheel are shown in Fig. 8. Figures 8(a) and 8(d) represent
the Rgb image and raw image of the train wheel captured by the left camera, respectively;
Figs. 8(b) and 8(e) represent the disparity map of the wheel obtained by the previous method
and the proposed method, respectively; and Figs. 8(c) and 8(f) represent the point clouds
obtained by the previous and proposed methods, respectively. The distance between the wheel
tread and the axle is 0.6 m, and their reflectivity is different. Using the error point filtering strat-
egy, the main area is preserved, and subpixel interpolation is used to achieve an accurate 3D

Table 1 Comparison of precision in the standard sphere experiment.

Left sphere
radius (mm)

Left sphere
RMS (mm)

Right sphere
radius (mm)

Right sphere
RMS (mm)

Sphere center
distance (mm)

Standard sphere 25.4 0 25.4 0 150

Before improvement 25.57 0.2787 25.17 0.3279 151.69

Ours without Raw 25.51 0.1398 25.49 0.1504 150.52

Ours 25.43 0.1098 25.41 0.1359 150.48

(a) (b) (c)

(d) (e) (f)

Fig. 8 Comparison experiment of train wheel imaging: (a) Rgb image of the wheel, (b) disparity
map of the wheel before improvement, (c) point cloud of the wheel before improvement, (d) raw
image of the wheel, (e) disparity map of the wheel after improvement, and (f) point cloud of the
wheel after improvement.
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reconstruction of the train wheel. In comparison with Figs. 8(b) and 8(e), the previous method
can only reconstruct the high-brightness parts of the tread and obtain sparse disparity, whereas
the improved method can reconstruct the complete wheel and axle disparity model and obtain a
dense point cloud with no obvious clustering.

The point clouds obtained by the multifrequency heterodyne method and our proposed
method for measuring the same wheel tread under the same experimental environment are shown
in Fig. 9. Figures 9(a) and 9(d) represent the point cloud after being cropped to retain only the
main body of the wheel. Figs. 9(b) and 9(e) show the point cloud after the same filtering oper-
ation. Figures 9(c) and 9(f) represent the extracted base point set, which are points 70 mm away
from the inner side of the wheel and can be used to determine the wheel’s radius. Comparing
Figs. 9(a) and 9(d), the point cloud obtained by the multifrequency heterodyne method has many
noise points on both sides of the wheel tread, whereas the point cloud obtained by our proposed
method has a higher quality. After the filtering operation, the point cloud shown in Fig. 9(b)
becomes sparse, and many valid points are removed. Comparing Figs. 9(d) and 9(e), the number
of points obtained by our proposed method is not significantly reduced after filtering, demon-
strating the reliability of our point cloud data.

The radius of the standard wheel used in our experiments is 420 mm. As shown in Table 2,
our proposed method has a more accurate measurement of the wheel radius and a lower error rate
compared with the multifrequency heterodyne method. Additionally, our method obtains a
higher number of (points) and a higher proportion of valid points, which is consistent with the
conclusions in Fig. 9.

The measurement results of the robotic arm are shown in Fig. 10, which is a scene that
contains objects with varying reflectivity. Figures 10(a) and 10(d) represent the Rgb image and

(a) (b) (c)

(d) (e) (f)

Fig. 9 Comparison experiment of the train wheel size measurement: (a) cropped point cloud
obtained by the multifrequency heterodyne method, (b) filtered point cloud obtained by the multi-
frequency heterodyne method, (c) extracted base point set obtained by the multifrequency hetero-
dyne method, (d) cropped point cloud obtained by our proposed method, (e) filtered point cloud
obtained by our proposed method, and (f) extracted base point set obtained by our proposed
method.

Table 2 Comparison of precision in the wheel size measurement experiment.

Wheel
radius (mm)

Radius
measurement

error (%)
Number of points
before filtering

Number of points
after filtering

Proportion of
valid points

(%)

Multifrequency
heterodyne
method

412.27 1.84 904,684 855,940 94.61

Ours 416.38 0.86 948,408 934,585 98.54
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raw image of the robotic arm captured by the left camera, respectively; Figs. 10(b) and 10(e)
represent the disparity maps of the arm obtained by the previous method and the proposed
method, respectively; and Figs. 10(c) and 10(f) represent the point clouds obtained by the pre-
vious and proposed methods, respectively. In comparison with Figs. 10(b) and 10(e), the pre-
vious method had reconstruction errors at the ABB symbol on the arm and only reconstructed the
bright stripes on the corrugated tube. The proposed method can obtain the correct disparity at the
ABB symbol and a complete dense disparity map of the corrugated tube.

4.2.2 Comparison experiment in a defocused scene

The measurement results of the roof pantographs and wire mesh are shown in Fig. 11.
Figures 11(a) and 11(d) represent the Rgb image and raw image of the pantographs and wire
mesh captured by the left camera, respectively; Figs. 11(b) and 11(e) represent the disparity map

(a) (b) (c)

(d) (e) (f)

Fig. 10 Comparison experiment of robot arm imaging: (a) Rgb image of the robot arm, (b) disparity
map of the robot arm before improvement, (c) point cloud of the robot arm before improvement,
(d) raw image of the robot arm, (e) disparity map of the robot arm after improvement, and (f) point
cloud of the robot arm after improvement.

(a) (b) (c)

(d) (e) (f)

Fig. 11 Comparison experiment of train roof pantographs and wire mesh imaging: (a) Rgb image
of the pantographs and wire mesh, (b) disparity map of the pantographs and wire mesh before
improvement, (c) point cloud of the pantographs and wire mesh before improvement, (d) raw image
of the pantographs and wire mesh, (e) disparity map of the pantographs and wire mesh after
improvement, and (f) point cloud of the pantographs and wire mesh after improvement.
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of the pantographs and wire mesh obtained by the previous method and the proposed method,
respectively; and Figs. 11(c) and 11(f) represent the point clouds obtained by the previous and
proposed methods, respectively. We keep the focal length of the projector and camera unchanged
and change the distance of the scene from 0.5 to 1.5 m, causing the projector and camera to be out
of focus. In comparison with Figs. 11(b) and 11(e), the traditional method can only recover
partial disparity of the front pantographs and completely fail to reconstruct the bottom frame.
Using the error correction strategy proposed in this paper, the complete 3D information of the
entire roof pantographs and wire mesh can be reconstructed, and the impact of low reflectivity
(e.g., pantograph carbon brushes or other black components) on the disparity calculation can be
reduced. This experiment demonstrates the high precision and robustness of the proposed
method in low reflectivity and out-of-focus scenarios.

4.2.3 Comparison experiment in a complex comprehensive scene

The measurement results of the ultrasonic probe and base are shown in Fig. 12. Figures 12(a) and
12(d) represent the Rgb image and raw image of the ultrasonic probe and base captured by the
left camera, respectively; Figs. 12(b) and 12(e) represent the disparity map of the ultrasonic probe
and base obtained by the previous method and the proposed method, respectively; and Figs. 12(c)
and 12(f) represent the point cloud obtained by the previous and proposed methods, respectively.
There is a significant difference in reflectivity across the scene. The ultrasonic probe is made of a
semitransparent material. In the traditional method [Fig. 12(b)], only the base and the left part of
the probe have recovered disparity, but the disparity of the component in the upper right corner
cannot be calculated. In the improved method [Fig. 12(e)], a complete and dense model of the
semitransparent probe can be reconstructed.

The experimental scene in Fig. 13 is even more complex, with various colored pipelines and
highly reflective metal surfaces. Figures 13(a) and 13(d) represent the Rgb image and raw image
of the complex pipeline scene captured by the left camera, respectively; Figs. 13(b) and 13(e)
represent the disparity map of the scene obtained by the previous method and the proposed
method, respectively; and Figs. 13(c) and 13(f) represent the point clouds obtained by the pre-
vious and proposed methods, respectively. The previous method [Fig. 13(b)] cannot calculate the
correct disparity in overexposed areas of the pipeline surface or areas with insufficient stripe
brightness. The proposed method [Fig. 13(e)] can accurately reconstruct the scene without
removing ambient light interference during the day, demonstrating the strong robustness and
imaging precision of the proposed method in complex industrial scenes.

(a)

(f)

(c)

(d) (e)

(b)

Fig. 12 Comparison experiment of ultrasound probe and base imaging: (a) Rgb image of the ultra-
sound probe and base, (b) disparity map before improvement, (c) point cloud before improvement,
(d) raw image of the ultrasound probe and base, (e) disparity map after improvement, and (f) point
cloud after improvement.
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4.2.4 Comparison experiment in a big scene

The measurement results of the 1.5-m long and 1-m wide train bogie are shown in Fig. 14.
Figures 14(a) and 14(d) represent the Rgb and raw image captured by the left camera, respec-
tively; Figs. 14(b) and 14(e) show the disparity map obtained using the unimproved method and
the method proposed in this paper, respectively; and Figs. 14(c) and 14(f) show the point cloud
generated by the unimproved and proposed methods, respectively. The robustness of our pro-
posed method is tested through complete large-scale 3D reconstruction. Comparing Figs. 14(c)
and 14(f), the unimproved method can only reconstruct a small portion near the focal plane, and
due to the high level of occlusion in the images captured by the left and right camera, it can only
produce a sparse and discrete point cloud. Our proposed method, on the other hand, benefits from
the error point filtering strategy, which enables accurate reconstruction of the complete point
cloud of the object. Additionally, the softargmin method has stronger anti-interference capabil-
ities and better stability on noncontinuous surfaces.

(a) (b) (c)

(d) (e) (f)

Fig. 13 Comparison experiment of complex pipeline imaging: (a) Rgb image of the pipeline, (b) dis-
parity map of the pipeline before improvement, (c) point cloud of the pipeline before improvement,
(d) raw image of the pipeline, (e) disparity map of the pipeline after improvement, and (f) point cloud
of the pipeline after improvement.

(a) (b) (c)

(d) (e) (f)

Fig. 14 Comparison experiment of complex train bogie imaging: (a) Rgb image of the train bogie,
(b) disparity map of the train bogie before improvement, (c) point cloud of the train bogie before
improvement, (d) raw image of the train bogie, (e) disparity map of the train bogie after improve-
ment, and (f) point cloud of the train bogie after improvement.
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5 Conclusions
The proposed method is simple and low cost, using a consumer-grade projector and color
industrial cameras. Based on traditional binocular structured light, key steps were optimized
for 3D imaging problems in complex industrial scenes. The use of raw images improved im-
aging quality, and the error point filtering strategy solved the problems of sublevel edge errors,
defocusing, and reliable regions. The subpixel matching of disparity resulted in a higher pre-
cision disparity map, meeting the requirements of industrial measurement. Comparison experi-
ments in industrial scenes showed that the proposed method has high precision and strong
robustness in 3D reconstruction of complex scenes. However, the number of gray code and
stripe patterns projected in this paper was relatively high, and it was difficult to quantitatively
analyze the imaging accuracy in some scenarios. Future research can focus on reducing the
number of projected patterns to improve the speed and efficiency of 3D measurement.
Additionally, quantitative analysis can be conducted on various scenes using the experimental
system that we built.
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