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Introduction

Abstract. Coronagraphy is a very promising method for directly imaging exoplanets, but the performance of
a coronagraph is highly sensitive to quasi-static aberrations within the telescope. The resultant speckles are
suppressed in the final focal plane using a wavefront control system that estimates the field at the final
focal plane to avoid any noncommon path error. This requires a set of probe images that modulate the field
so that it may be estimated. With an estimate of the focal plane electric field, a control law is defined to suppress
the speckle field so that the planet can be imaged. Characterizing the planet requires that the speckle field be
suppressed simultaneously over the bandpass of interest. The choice of control law, bandpass, estimator, and
probing methodology has implications in the control solutions and contrast performance. Here, we compare
wavefront probing, estimation, and control algorithms, and describe their practical implementation. © 2015
Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JATIS.2.1.011009]
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Directly imaging exoplanets, particularly Earth-like exoplanets,
has been a goal of the scientific community for some time and
was identified as a key technological priority in the last decadal
review.! Starshades and coronagraphs are the key enabling tech-
nologies for direct imaging missions in space. Both are experi-
encing great successes in their technology development, with
a few modern examples of these designs being the Exo-S,’
Exo-C,> and WFIRST-AFTA* studies. The starshade option
requires formation flight of the telescope with a second satellite
that occults the star to a diffraction-limited level so that only the
planet light enters the telescope. A coronagraph relies on a series
of apodizers, masks, and stops in the instrument to suppress the
starlight so that the off-axis planets can be imaged. The trade for
a single satellite means that the starlight enters the telescope,
resulting in aberrations that leak starlight into the coronagraphic
image. Even small aberrations affect contrast at a 10710 contrast
level, the relative intensity at which we expect to see Earth-like
exoplanets. Furthermore, these aberrations are dynamic in even
the most stable telescope and result in a quasi-static speckle field
in the image plane. The solution is to include deformable mirrors
in the instrument so that the resultant speckles can be actively
suppressed, allowing us to recover a dark hole of high contrast in
the image plane. The precision required to create a dark hole at
extremely high contrast drives wavefront-sensing methods away
from sensors that introduce noncommon path optics. Thus, the
control loop is closed around the final science image where we
must first estimate and then control the electric field to maintain
a dark hole in which we can discover and spectrally characterize
targets.

Here, we describe the current control and estimation methods
for focal plane wavefront control at multiple facilities, most
specifically drawn from practical experience at the Princeton
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University High Contrast Imaging Laboratory (HCIL) and the
Jet Propulsion Laboratory’s (JPL) High Contrast Imaging
Testbed (HCIT). We begin by formulating the linear problem
under the framework of Fourier optics, a common approach
to all such focal plane methods. A comparison of the mathemati-
cal basis for various controllers and estimators follows. Finally,
we describe several probing methods, evaluate the quality of our
observation as a function of the probe chGoice, and examine
how this affects our ability to achieve high contrast.

2 Wavefront Control

We begin by deriving the underlying mathematics for a gener-
alized focal plane wavefront control instrument. A schematic of
the Princeton HCIL layout is given in Fig. 1 to illustrate the con-
cept. One can consider the fiber launch in Fig. 1 to be the input
image from the telescope. What follows is the simplest possible
control system with two deformable mirrors (DMs). The beam is
collimated by an off-axis parabola (OAP), reflects off two DMs
in series, and propagates through the apodizer. In the case of the
HCIL, the apodizer is a shaped pupil coronagraph,>® but the
choice of apodizer only affects the transformation required to
reach the image plane (which is generalized in this paper).
With the shaped pupil located in the first pupil plane, we then
form the first image with a second OAP, block the core of the
point spread function (PSF) with a focal plane mask, and reim-
age onto the science camera. Note that there is no wavefront
sensor, and the purpose of this section is to derive the transfor-
mations that describe the effect of perturbations in collimated
space on the image plane electric field so that we can ultimately
define model-based estimators and control laws where the
sensing is done in the image plane. Augmenting the controller
to multiple DMs, and mathematically correcting for moving DM
surfaces to planes nonconjugate to the pupil is fully described by
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Fig. 1 Optical layout of the Princeton High Contrast Imaging
Laboratory (HCIL). Collimated light is incident on two deformable
mirrors (DMSs) in series, which propagates through a shaped pupil,
the core of the point spread function is removed with an image plane
mask, and the 90 deg search areas are reimaged on the final camera
when using the Ripple3 shaped pupil coronagraph.

Pueyo et al.,” with various details of controllability addressed by
Shaklan and Green® and Groff.” Once again, these will have
small effects on the form of the transformations that we have
generalized here.

Treating the designed pupil field as A(u, v), the DM surface
as a phase perturbation at the pupil plane, ¢(u, v), and including
a distribution of complex aberrations, g(u, v), the electric field at
the pupil plane at any control step k is given by
Epup(1t.0) = A(u, 0)[1 + g(u, v)] ), (1)
For controller design, we write the controlled phase at step & as a
sum of the previous DM surface and a small perturbation, ¢,
about which we will ultimately linearize the phase induced by
the DM. It is important to note that we show the aberrated field
as a separate additive complex error, g(u, v), but this makes it
less obvious that the initial field about which one linearizes
should be the entire phase distribution in the pupil. In other
words, ¢o(u, v) would include an estimate of the entire aber-
rated field. At HCIT, this comes from the initial phase diversity
estimates used to flatten the pupil field and determine its starting
complex field.

Assuming that the phase perturbation from the DM, 6¢,, is
adequately small, we let ¢p;, = ¢hy_; + ¢, and take a first-order
approximation of the exponential, resulting in the linearized
form of the pupil field.

Epup i (1, v) = A(u, v)[1 + g(u, v)]e®1[1 + idgy (u, v)).
(2)

Additionally, we assume that the product gdé¢, is negligible
compared to the other terms since they will both be small
and are of approximately the same magnitude, letting us rewrite
the expanded field as

Epup i (1, v) = A(u, v)e =1 [1 + g(u, v) + idgy(u,v)].  (3)
Treating the propagation through the coronagraph and imaging
system as a linear transformation between the image and pupil

planes, C{-}, the linearized form of the image plane electric field
is written as
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Ejp(x.y) = C{A(u, v)e 1 [1 + g(u, v)]}
+ iC[A(u, v) e 5y (u, v)]. )

Wavefront control is accomplished by commanding DM actua-
tors, not setting the phase across a mirror. Thus, we apply a
physical model of the DM in terms of actuator commands.
Normalizing the surface height of the mirror, H(u, v), by the
wavelength, 4, the phase shift, ¢(u, v), induced by the DM is
given by

d(u, v) :%H(u,v). 5)

We describe this surface profile as a combination of the two-
dimensional height maps imposed by each actuator. Since we
are using a DM with a continuous face sheet, the contribution
of any actuator will be highly localized but will still deform the
entire DM surface. Thus, we define the contribution of any ¢’th
actuator as a characteristic two-dimensional phase map over the
entire plane of the DM surface with unitary amplitude, f q(u, v).
We can then describe H(u, v) as a superposition of these char-
acteristic shapes, commonly referred to as influence functions,
over all N, actuators. Defining the amplitude of each influence
function (represented as a phase shift in meters to eliminate
a factor of two) as a,, the phase perturbation induced by the
DM becomes

act

N
¢(u,v) :%Zaqfq(u, v). (6)
q=1

Since Eq. (6) is linear in actuator amplitudes, we can substitute
Eq. (6) for 6¢; in Eq. (4). The image plane response to a change
in actuator amplitudes at the k’th step is given by

Ejpi(u, v) = C{A(u, v)e""1 [1 + g(u, v)]}
27i &

+ 7Z(San[Aefd»k—l fo(u,v)]. (7)

q=1

act

Since we only measure the field intensity at a finite number of
pixels, we convert the continuous functions in Eq. (7) to values
at each pixel and rewrite in matrix form.

Ejp i = ClAe=1 (1 + gi)] + Gy, (8)

where E;, ; is a matrix of dimension N;, X 1 containing the
electric field at each pixel.

G, = iC(Aeh f) ©)

is the Ny, X Ny control effect matrix accounting for the propa-
gation of each influence function, each of which is embedded in
a matrix f, and u; is a column matrix of changes in actuator
amplitudes at step k, u; = [8a;...Say_]}. The discretization
of the field is naturally subject to numerical effects. One
must take care to correctly sample each plane, and the choice
of transform method can also become important. Numerical
transforms are widely used in high-contrast imaging experi-
ments, and their effect has been well studied. One notable
study was done in the development of the PROPER optical
propagation library by Krist.!
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Finally, the measured intensity in the image plane is just the
square of the field, 1, ;(x,y) = |Ei i (x,y)|*. We often refer to
the area in the image plane where sufficient contrast has been
achieved as the dark hole and use the notation Iy for the high-
contrast intensity (either designed or controlled) there. The
objective of the wavefront controller is to find the control matrix
uy, that will recover the desired contrast in the dark hole in the
presence of the aberrations.

3 Speckle Nulling

Speckle nulling, whose fundamental equations are described
fully in Ref. 11 along with a speckle energy minimization
and sensing scheme, is the simplest form of suppression in
the final image plane. It does not require an estimate of the elec-
tric field and, therefore, only closes the loop on intensity images
in an attempt to slowly drive the unobservable field states to
zero. All that is needed is a mapping of spatial frequencies at
the DM plane to image plane locations. Speckles are then
singled out in the image and suppressed based on their intensity
and phase. The amplitude of the command for any spatial fre-
quency is directly proportional to the intensity of the speckle.
Specifically, the DM amplitude should scale as A/[peckie-
The correct phase shift for each spatial frequency command
on the DM is determined by minimizing the energy of the
speckle in the image plane. Since the amplitude and phase of
any spatial frequency on the DM are computed directly from
intensity measurements at the detector, speckle nulling tends
to be highly robust to model error and does not require as
much computational overhead. However, it is highly inefficient
compared to other control methods because speckles are dealt
with one at a time and there is no guarantee that canceling a
speckle will not degrade the contrast of other speckles. This
has been mitigated in some sense by simultaneously solving
for the multiple speckles at a time, which has been reported
at the Ames Coronagraph Experiment Laboratory, where the
algorithm is typically used in conjunction with electric field con-
jugation (EFC).!? Despite this, speckle nulling tends to be slow
and is largely relied upon to clean up stray artifacts. The main
advantage of speckle nulling is its robustness to model error,
which is thoroughly demonstrated on sky by Martinache
et al. without the aid of extreme adaptive optics.'?

4 Monochromatic Model-Based Control
Algorithms

The primary control laws used in focal plane wavefront control
for the past decade at Princeton and JPL are stroke minimiza-
tion” and EFC."* Though other variants, such as the corona-
graphic focal plane wavefront estimation for exoplanet
detection (COFFEE)" algorithm, have also been studied, stroke
minimization and EFC have achieved the highest contrast of any
controllers to date and are the primary control laws under con-
sideration for the WFIRST-AFTA coronagraph system. In this
section, we describe each, highlighting their differences and
similarities.

4.1 Stroke Minimization—Lagrange Multipliers

The stroke minimization algorithm’ seeks to regularize the con-
trol solution by directly minimizing stroke under the constraint
that the solution for the desired DM perturbation achieves a
specified contrast level.
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Applying the matrix form of the control amplitudes in Eq. (9)
and taking the inner product (represented as (-, -)) of Eq. (4), we
find the intensity in the dark hole at the operation wavelength,
4g, to be

2

4n 4z .
IDH(k) = /I—zu{Mkuk + %M{d{bk} + dk’ (10)
0

where 3{-} is the imaginary component of the operand, and

My = (C(AeP1f,).C(AeP1 f1)) = GiGy. an
by = (Eap i C(Ae "1 f1)) = GiEap (12)
dy = (Eagpis Eapx) = Elp xEap ks (13)
Eqpr = ClAeP1 (1 4 gy)]. (14)

Conceptually, d, is the column matrix of the intensity contribu-
tion from the aberrated field, E,, ;. The measured intensity can
be used to construct d; if there is not a large bias in the signal.
The matrix b, represents the interaction of the DM electric field
with the aberrated field, and M, describes the additive contri-
bution of the DM to the image plane intensity for a given
DM shape, f, at control step k. Having represented Ipy in
a quadratic form in terms of the control signal, we can use
Eq. (10) to produce an optimal control strategy. The optimiza-
tion problem in monochromatic light is functionally stated as

minimize 7Y | a7, = uju
. (15)
subject to  Ipg(k) < Cy

where C; is the contrast constraint at each iteration, which
changes over time to steadily decrease contrast.

To solve the optimization problem, Pueyo et al.” realized a
control law by modifying the inequality constraint in Eq. (15)
to be represented as the equality constraint (Ipy — Cy) = 0.
Incorporating the equality constraint for the central wavelength
into the minimization on stroke via a Lagrange multiplier, y;,
yields a quadratic cost function given by

Ji = ugug + pi[Ipy (k) — Cy]

4n? Az .
:u{uk—l—,btk(/l—zu,{Mkuk—i—/l—u{J{bk}+dk—Ck)

0 0

4x? Az .
:u£<I+/‘k/1_2Mk>”k+ﬂk;L_u1{~s{bk}+/‘k(dk_ck),

0 0

(16)

where Z represents the identity matrix. The quadratic form
guarantees a single minimum to the linearized equation. This
is identical to a linear least squares solution. Recognizing that
M, is guaranteed to be symmetric, and hence M; = M, we
take the partial derivative to find actuation that minimizes the
cost function. Evaluating

4n? 4z
= 2<I+Mk—2Mk) up i+ i~ 3{by} =0
Uk /10 /10

oJ
oul

a7

and solving for the optimal control input, we find
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1A 2r -1
Upp = _(/A_kiI—FEMk) 3{by}. (18)

To find the value of u; 4, all that is left is to find the value of
that minimizes the cost function, Eq. (16). This has historically
been done via a line search on y;, continuously increasing p,
evaluating u; with Eq. (18) for each value of y; until the quad-
ratic intensity given by Eq. (10) goes below the targeted contrast
value. Since this is a linearized subprogram, we must relinearize
about the new DM shape at each iteration of the correction algo-
rithm (or every time we apply a new DM command). This is
computationally expensive, so we tend not to do this in the
experiment. However, the nature of the controller is such that
the solution will not deviate dramatically from the optimal
one found by relinearizing at each iteration. Since the controller
is trying to minimize stroke, the control signal tends to remain in
the regime of a particular linearization for as long as possible.
Statistics on the control history for a representative two-DM
experiment at HCIL is shown in Fig. 2. We observe that the
vast majority of stroke is used to eliminate strong aberrations
in the first five iterations of the control history. After this,
the extrema and mode reduce dramatically, frequently a factor
of 10 less stroke than the first iteration. Throughout the entire
control history, the median never deviates far from zero, mean-
ing that a dc drift never develops and the shape about which we
are linearizing is nearly identical as we approach our ultimate
achievable contrast.

4.2 Electric Field Conjugation—Tikhonov
Regularization

EFC is an alternate controller approach first presented by
Give’on et al.'* Tt was originally modeled on the traditional,
pupil-based adaptive optics approach, where the DM is set to
conjugate the phase in the pupil to recover as flat an entering
field as possible. In focal plane wavefront control, the analogous
field conjugation would be done in the image. That is, given an
estimate of the electric field at step k—1 from Eq. (8),

Ejpi = C(Aei®=1) + C(Aei®+-1g), the EFC controller seeks to

drive to a desired field, Ej, allowing us to define the targeted
field perturbation as

61 = Mode
=e=- Median

= : e Max — Min
E 4 - :
S 2
<
o
= 0
k3]
jas)

ot

-4 . . . . .

5 10 15 20 25 30
Iteration
(a)

Height change (nm)

8Ey = Eypyy — Ep. 19)

Substituting for the control effect in Eq. (8), the goal is to use the
DM to create a field perturbation, §E;, such that the desired field
becomes

Ep = C{A(u,v)e 1 [1 + g(u, v)]} + SE;.
= Eim.k(x7 y) (20)

In its original form, EFC seeks to find a control G,u; that
conjugates the residual aberration terms in Eq. (20), to create
the desired final field in the image plane. The effect of different
choices of Ep, will become clearer once the controller has been
fully defined.

Unfortunately, given the limitations of the influence function
form of the DMs, the image plane field perturbation in Eq. (20)
is not always reachable. In other words, one cannot simply
invert Gy to solve for u; given the desired field perturbation
defined in Eq. (19). Instead, EFC seeks to find a control as
close to the desired field perturbation as possible. We do so
by defining an error, &, between the controlled field and the
desired field as

€ = Gkuk - 5Ek (21)

EFC seeks to minimize this error rather than minimize the stroke
as in Sec. 4.1. Doing so via a simple least-squares solution,
however, often produces an ill-posed problem. Thus, EFC uses
a regularized cost function to guarantee inversion. The regulari-
zation parameter, [, is introduced via a Tikhonov regulariza-
tion, making the quadratic cost function

Wk = (le/tk - 6Ek)*(le/tk - 6Ek) + M{F{Fkuk (22)

Evaluating the partial derivative,
ow,

3 2(GiG + I“Zl“k)uw,k —2Gi6E, =0, (23)
Uy

|uw./< -

the control vector that minimizes Eq. (22), u,,, is given by

g —— Mode
10 =e= Median
Lo e Max — Min
5 -
0 [
=5

5 10 15 20 25 30
Iteration

(b)

Fig. 2 Time history of actuation statistics for each DM. We plot the mode, median, and peak-to-valley
actuation levels for (a) DM1 and (b) DM2 in a representative control run at the Princeton HCIL. The
starting contrast is 1 x 10~* and final contrast is 2.3 x 10~7 in symmetric dark holes.
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uy i = (GiGy + ')~ G} SE;. (24)

With no particular reason to weight any specific field position or
actuator, the regularization matrix, I';, is defined as

Fk = akI. (25)

The regularized solution and its associated cost are then given by
Wk = (Gkuk - 5Ek)*(Gkuk — 5Ek) + aiuluk, (26)

Uy = (Gsz + (I%I)_IGZ§E]< (27)

As with stroke minimization, the task is now to search
through @, to evaluate u,, in Eq. (27) and minimize
Eq. (26). What is interesting is that the solution directly weights
the minimization of stroke against the residual from the targeted
electric field. As the regularization parameter, a;, is increased,
the solution will seek smaller solutions of u, but the targeted
electric field may become unreachable.

What remains is to choose dE; for the field perturbation at
each step, or equivalently, the desired field Ep. If we attempt to
drive to the nominal electric field that the coronagraph would
achieve in a perfect optical system, making E;, = C{A},” the
target field will be given by

SE, = E, — C{A} (28)

= ClAei1 (1 + g)] — C{A}. (29)

Under the optimistic assumption that the estimated component
of the nominal field matches the expected nominal field, the
target becomes

SE, = C{Ag). (30)

If the intent is to drive the field to zero, E, = 0, then the con-
troller should attempt to conjugate the current field estimate,
making

SE, = E,. (31)

Referring back to Eq. (12), we see that in this second scenario,
GISE; ~ b, and the form of the monochromatic solution is
identical when using EFC or stroke minimization.

4.3 Comparing Control Laws

Where stroke minimization is attempting to achieve a targeted
average contrast in the image plane via an equality constraint,
EFC is attempting to minimize the desired field error and
stroke is minimized via the regularization parameter. Thus, the
true mathematical difference between stroke minimization and
EFC is only in the inherent priority lent in each cost function.
Where the primary metric of minimization in stroke minimiza-
tion is the total DM stroke, leaving the resultant field as a free
variable, the primary metric of minimization in EFC is the field
residual, leaving the required stroke as a free variable. In mono-
chromatic light, this simply means the Lagrangian for our cen-
tral wavelength, u,, and Tikhonov regularization parameter, af,
are inverses of one another. This is entirely due to the fact that
the inequality constraint of the intended algorithm in Eq. (15)
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has been implemented as an equality constraint in a quadratic
cost function.

For monochromatic control, the real difference is not from
the choice of control law but in its algorithmic application.
Details in the choice of minimization parameters, (uy, Cy)
for stroke minimization and (ai, SE;) for EFC, will yield dif-
ferent (sometimes dramatically different) solutions. The logic
used in these choices seems to be a function of the user/labo-
ratory in question and can have the greatest impact on varying
control solutions to achieve a specific contrast level in the
image plane.

In the case of the regularization parameter, the principal
difference we see in their algorithmic applications is how this
value is tuned, or if it is tuned at all. Here we point out that
the proper mathematical application of these algorithms is to
relinearize after every iteration and to perform a high-resolution
line search on the Lagrange multiplier (or equivalently the
regularization parameter) to find the true minimum for that
time step.

Choosing the targeted contrast (or desired field) tends to be
more of an ad hoc decision. Experimentally, this is generally
driven by practically achievable step sizes in early iterations.
At some point, one can pick a target that is unreachable by the
controller at that iteration. There are essentially two scenarios
for this value. The first is at the end of control when we have
reached our final achievable contrast. This tends to be limited
by noise, be it sensor or process noise. In this case, the contrast
target is insignificant because we are ultimately limited by the
estimator, which is discussed in Sec. 6. More interesting for the
controller is the second scenario, where we observe unreach-
able states in early iterations. This would seem curious because
these states are not below the instrument’s ultimate achievable
contrast and we are not yet sensing at an unfavorable signal-to-
noise ratio (SNR). The simplest explanation is that the actuator
strokes are highest during early iterations and the contrast tar-
get will be limited by the accuracy of the current Jacobian. In
this case, the next higher-order terms that were neglected in
Eq. (8) become significant for the probe and control ampli-
tudes in question. Thus, while theoretically reachable, the
linearization defining the controller’s Jacobian, G, will effec-
tively have lower accuracy in early iterations than in later iter-
ations because higher-order terms in the linear expansion are a
function of the DM amplitude. This is true even if the same
Jacobian is used in later iterations and is a separate issue
from whether one chooses to relinearize at each iteration of
the algorithm. As a functional example, the Princeton HCIL
has demonstrated dark holes that suppress the aberrated
field from ~1 X 10~ to ~2 x 10~7 without relinearizing the
Jacobian,'s but we cannot achieve 2 x 1077 in a single time
step when we start at 1 x 107, The effect of probe amplitude
does play a role in accuracy, and its error propagation is dis-
cussed in Sec. 8. Here we are only making the case that the
controller amplitude limits the ability of the Jacobian to accu-
rately predict the shape required to achieve a particular contrast
value or field target. Thus, we tend to throttle the target so that
we are not left with undue DM residuals that will have to be
compensated anyway.

5 Broadband Model-Based Control
Algorithms

Monochromatic control of the image plane field represents a sig-
nificant step toward detection, but the controller must ultimately
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be capable of creating a dark hole in broadband light so that we
can take spectra of the planets. We are typically only concerned
with ~#10% bandpasses, but it would be useful to achieve a
bandpass as large as 20%. Some of the first broadband results,
presented in Ref. 6, used the monochromatic controller at a cen-
tral wavelength and accepted the contrast degradation in the
rest of the bandpass. However, both EFC and stroke minimiza-
tion have been developed into broadband control laws by aug-
menting the cost function with multiple monochromatic
estimates that span the bandpass of concern.

5.1 Windowed Stroke Minimization

To define the bandpass of the controller, we begin with the
monochromatic constraint in Eq. (15). The center wavelength
constraint at 4 is now augmented with two more contrast con-
straints C, , and C,, ; at bounding wavelengths 4,, 4,, to define
a window over which the correction will be made. With three
separate constraints, the optimization now becomes

minimize Z,A,]‘“l a = uj iy
subject to  Ipy(do) < Cyy s
Ipu(4y) < Cy ks
pu(41) Ak (32)
Ipu(42) < Chi
where A =711k
A = 7240

Acknowledging that the variables in Eq. (10) are a function of
wavelength, the variables defined in Egs. (11) to (13) are written
here as M, b, ,, and d,; respectively. Using these variables,
the wavelength-dependent form of the dark hole intensity
defined in Eq. (10) is given by

4n? Az .
Ipu(4) = w(d) —5 pE ug M g + w(2) 7u£~s{bi,k}
+w()dy i (33)

where the normalization value, w(4), accounts for the fact that
the relative intensity of each wavelength will vary as a function
of wavelength. This additional normalization step prevents any
wavelength from being artificially weighted in the cost function.
Defining the wavelength as a scalar multiple of the central wave-
length, 4; = y;4¢, we rewrite Eq. (33) as

Ipu(4i) = w(ki) 75

+ W(Ai)dl-,k' (34)

Using Eq. (34), we define a cost function from the problem
described in Eq. (32) by applying three separate equality con-
straints, one per wavelength. Using a separate Lagrange multi-
plier for each wavelength, p o, f4.1, and i >, the most general
form of the broadband cost function is given by
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Ji = ugug + prollon(Ao) = Coy k] + pici Ipu(4) = Cy, 4]

+ tiollon(42) = Cy, 4]

472 w(A
=u {I +— gy {ﬂk,oMzn.k + P %Mﬂl.k
w(A 4n N
Tl —>— ( 2) M,, } }uk + /1—14{ |:ﬂk,0~s{b/10,k}
72 0
w(di) o w(z) o
+ M1 ) 6{1%.1(} + U () J{baz,k}}
71 72
+ lro(dagk = Cop k) + tiaw(Ay)(dy x — Ci, 1)
+ s ow(A2)(dyy k — Ci0)]- (35)

With multiple constraints, we now have the problem that the
optimal solution in the three-dimensional space (i o, fix.1 i)
does not necessarily guarantee the targeted suppression at all
three wavelengths. However, with three Lagrange multipliers,
we can guarantee suppression of all three wavelengths by
restricting the search to a single dimension. We write the
Lagrange multipliers of the two bounding wavelengths as
weighted values of the first so that p;; = &1uo and py, =
Oy o- Applying this relationship to Eq. (35), the windowed
stroke minimzation cost function becomes

47 w(A w(k
Ji=ufST+py o—5 | M, k61 (I)Mxl,k‘f'(sz (22)M/12,k Uy
/10 yl 72

( 2)

47[ o (o9 o
+ﬂk.0/1_0u£|}s{b/10.k}+61 1(/1) 3{by,, }+52 {b/lzk}:|
ol (dyy k= Coy k) 61w (4 ) (dy, k—C, &)
+62W(/12)(d/12,k_ciz,k)]‘ (36)

We are left with a weighted optimization where we can
effectively tune the contrast requirement on the bounding
wavelengths, (4;,4,), against the central wavelength, 4, with
our choice of §;,0,. Following the same procedure as in
Sec. 4.1, we take the partial derivative of Eq. (36) with respect
to the control vector. In this case, the broadband control analog
to Eq. (18) is given by

Uy k

1 A 2 M A -1
:_{ 07y ”[M%pta, w( )Mm 6, w( Z)Mzz H
/lk,ozﬂ Ao 71 7’2
w(4;)
14

( 2)

[ by} +6——=3{b;,. k}+52 m{baz k}] (37)

With only one Lagrange multiplier left, we apply the same algo-
rithmic procedure as in Sec. 4.1, using Eq. (37) to determine
the value of u,; as we search for value of i  that minimizes
the cost function, Eq. (36).

With the controller defined, we now evaluate its ability to
produce a uniform contrast in wavelength space. The most
recent broadband results from the Princeton HCIL producing
symmetric dark holes in a targeted 10% band around
Jo = 633 nm are shown in Fig. 3."” In all cases, the controller
corrects two rectangular areas spanning 6 to 11 X =3 to 34,/D
on both sides of the image plane. The contrast level is evaluated
over two rectangular areas spanning 7 to 10 X —2 to 24,/D on
both sides of the image plane. Note that this area is defined by
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Fig. 3 Experimental results of broadband correction using the windowed stroke minimization algorithm.
(a) Achieved contrast as a function of wavelength, (b) contrast over a >20% bandpass, (c) initial 10%

bandpass image, and (d) final 10% bandpass image.

the central wavelength for all measurements so that contrast
performance correlates to a fixed sky angle, S, defined as
p = tan!(nAy/D). Since both DMs are nonconjugate to the
pupil and have very large wavefront error,’” we anticipate
there to be a great deal of chromaticity in the Princeton
HCIL. We will briefly address these limitations in the context
of the experimental results, but for now, we chose to slightly
underweight the bounding wavelengths in the optimization,
choosing 6; =0, =0.75 at the bounding wavelengths,
41 =600 and 4, = 650 nm. In this particular experiment, we
estimate each wavelength separately using the batch process
estimator discussed in Sec. 6.1. The final dark holes, shown
in Fig. 3(d), reached a contrast of 5.67 X 107 in an ~10%
band and 1.364 x 10> over the full band of the laser, shown
in Fig. 3(b).

Individual monochromatic images of the final dark hole are
given in Fig. 4. With the bounding wavelengths only slightly
underweighted in the optimization, we see in Fig. 3(a) that
the contrast is relatively constant in wavelength over the 10%
band. We also see in Figs. 4(a) and 4(c) that there is very little
evolution of the dark hole at the bounding wavelengths of the
10% bandpass.

The question that now arises is what limits contrast as a func-
tion of our choice in bandpass. Correcting over a 10% bandpass
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automatically costs us an order of magnitude in our final achiev-
able contrast. The most obvious answer is the inherent chroma-
ticity of our pupil from highly aberrated, nonconjugate planes.
Shaklan et al.'® show that the ultimate achievable contrast is de-
pendent on the propagation of phase-induced amplitude errors
from optics that are nonconjugate to the pupil plane. They also
point out that since the control system has a finite set of con-
trollable spatial frequencies, the ultimate achievable contrast
will become a function of the bandwidth we choose in our
dark hole. Using the results of Shaklan et al.,'® we have previ-
ously estimated the lower limit of the Princeton HCIL to be
~1 x 107 for a 20% bandwidth."” This order of magnitude
bound only accounts for the quilting of the two DM surfaces,
both of which are shown in Fig. 1 to be at planes nonconjugate
to the pupil. This bounding estimate both highlights the impor-
tance of bandwidth in the optical design and indicates that our
current performance is still worse than the fundamental limita-
tions of this optical system.

Given that we do not believe we have reached a fundamental
contrast floor in a 10% band, we now consider other limitations
that could affect broadband control. At the time of these
measurements, the contrast of speckle measurements in the
Princeton HCIL was only stable to within ~0.5 to 1x 10~°
over the period of tens of minutes to an hour. It is possible
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Fig. 4 Final measurements of the three monochromatic wavelengths estimated for the windowed stroke
minimization controller. (a) Lower bound image at 600 nm achieved a contrast of 6.31 x 107%, (b) central
image at 633 nm achieved a contrast of 4.00 x 10-6, and (c) upper bound image at 650 nm achieved

a contrast of 6.67 x 1078,

that we reached a stability limit in the experimental setup in this
particular broadband experiment. The broadband source is of
much lower power than the monochromatic source, driving
up the integration time for each image. The broadband solution
also requires three individual estimates to achieve the results
shown in Fig. 3. Thus, we are estimating over a time scale
that will affect our measurements by =1 X 107°, and it is not
surprising that we were only able to correct down to the
1 x 1076 level at any wavelength. This highlights the importance
of setting stability requirements, which must scale with the mini-
mum allowable integration time required to obtain an adequate
SNR. HCIL, being an air experiment with no active temperature
control directly on the optical bench, has very poor stability
compared to what is expected from a space environment.
However, we can control under equivalent time scales as the
observatory environment by taking shorter exposures (between
100s of milliseconds to a minute depending on the experiment)
with a brighter source. This makes yet another point; to accu-
rately predict the performance of a flight instrument from an
experimental testbed, one must extrapolate the system stability
to time scales relevant to the expected integration time.
Broadband estimation, taking inherently longer to accomplish
than monochromatic estimation, should be the time scale
used to impose a stability requirement on the telescope. It is pos-
sible to make the time scale of broadband estimation similar to
the monochromatic case if we can estimate each wavelength
simultaneously. To do so requires closing the control loop
around an integral field spectrograph (or an analogous imaging
spectrograph).

To take full advantage of an observatory’s stability,
we clearly want to reduce the time required to produce
estimates of the electric field over the optimization bandwidth.
Furthermore, the high potential for stability limitations points us
to the use of the Kalman filter estimators, discussed in Sec. 6.2,
because we can reduce the number of images per control step.
With coronagraphy generally living in the photon limited
regime, we must keep in mind that in addition to other noise
sources, the sensitivity of wavefront control to temporal stability
will be driven by our broadband estimation steps.

5.2 Broadband Electric Field Conjugation

As with stroke minimization, we create a broadband form of
EFC by augmenting the cost function with multiple
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wavelengths. We redefine the error function in Eq. (21) for
the monochromatic case as

€,k = Gy ki — OE, 1, (38)

where G, ; and 0L ; are the wavelength-dependent Jacobian
and field target, respectively. Summing a discrete set of these
error metrics in wavelength, the broadband EFC cost function
is given by

N
W= Z (G atte = 8Ep, 1) (G sttic = SE, 1) + ug T Tty
i=0
(39)

Evaluating the partial derivative,

aWk o * T = *
~u,, =2 Z Gk Gk Jug i — 22 G, kOE; «
i=0 i=0

0uk
=0, (40)

the control vector that minimizes Eq. (22), u,,, is

N -1r N
Uy = {Z GG+ r,{rk] [Z G;l_.k(sE%,k} . @D
i=0 i=0

If we once again simplify the regularization matrix using
Eq. (25), the cost function and associated control solution are
given by

N
W, = Z (G xtty — SE; )" (G, gty — SE; 1) + ug U Ty,
i=0
(42)
N -1 N
Uk = {Z GGk + 0%4 [Z Gi.k‘SEz,-.k] . (43)
i=0 i=0
As Give’on et al.'"* have pointed out, it is also possible to avoid
the summation by augmenting the Jacobian as a larger diagonal

matrix. The mathematics are identical to the summation pre-
sented here, and the approach is largely limited by the maximum
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practical (or allowable) matrix size in the computation. In either
case, the task is once again the same. We must search through
ay to evaluate u,,; in Eq. (43) and minimize Eq. (42).

The resemblance between the broadband EFC algorithm and
windowed stroke minimization is not as strong as it was in the
monochromatic case. Their reciprocal treatment of the regulari-
zation parameter and Lagrange multipliers becomes more
signifciant in the presence of multiple parameters. Since the
constraints are applied to the contrast target in windowed stroke
minimization, each wavelength has its own Lagrange multiplier.
With the modification made in Eq. (36) to further constrain the
solution, the two become much more similar in that there is only
a single regularization parameter we search through in the opti-
mization. If arbitrary weights were included in Eq. (39), then
Eqgs. (42) and (43) would be nearly identical in form to the opti-
mization defined in Egs. (36) and (37). As in the monochromatic
case, their exact functional similarity will be associated with the
choice of JE; ; in the EFC control law, and the algorithmic
approach to their implementation remains unchanged save for
the choice in weights.

6 Wavefront Estimation

The principle of focal plane wavefront control is that high con-
trast is best achieved by avoiding all possible noncommon errors
that arise from path, temporal, or wavelength differences. Thus,
the controller is provided with an estimate of the electric field at
the final image plane, rather than from a measurement taken by a
separate wavefront sensor. The three principal methods used to
sense the image plane electric field in high-contrast imaging are
Gerchberg-Saxton based multiplane solutions,'®! differential
fringe imaging, such as the self-coherent camera®® or pinhole
masks,?*?* and DM probing. Multiplane solutions are typically
used as an initialization step where the pupil field is flattened in
an attempt to initialize control with the cleanest beam possible.
Creating fringe patterns in the image is a very clever way to
sense the field and has demonstrated great success in high-con-
trast imaging.”® As a flight instrument, this means adding a
mechanism and is not necessarily compatible with all corona-
graphs. This is particularly true if multiple classes of corona-
graph are used in the same instrument, as is the case with
the WFIRST-AFTA concept. With or without a fringe-based
technique, DM probing is always possible and is attractive
because it only relies on the DM already needed for wavefront
control. No additional sensors or mechanisms are required to
probe the electric field in the image plane. There are, however,
limitations with such a method. Here we derive the estimation
scheme associated with DM-based probing where the image
plane is modulated with a set of diversity, or probe, images.

6.1 Batch Process Method

Pair-wise difference imaging, as first developed by Give’on
et al.,'"* allows the estimation of the focal plane electric field
from several intensity images, each with a different DM setting.
As originally conceived, at least two pairs of probed images are
required to invert the measurements and obtain the real and
imaginary parts of the electric field. The choice of these
probe shapes is important and is the principal topic for the
remainder of this paper. Here, in Sec. 6, we first derive the
basic least-squares estimator, which will subsequently be com-
pared to a Kalman filter estimator.

Letting u; ; be the signal for the j’th positive probe shape in
the k’th iteration, we refer back to Eq. (10) to define the change
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in the focal plane electric field for a given pair of probe shapes,
Pj+k = £Gujy . Recalling Eq. (14), we apply these shapes to
Eq. (10) to define their image plane intensities as

Licg = |Ewpil® + |pjal* £2R{(Ewi. Pjx)} (44)

where Rt{-} takes the real part of the field. The difference of
the positive and negative probed images is just the cross-term.

Alje =1 =1 = 4R{(Ewpi- Pj) }- (45)

Recognizing that R{(A,B)} = R{AIR{B} + 3{A}3{B}
R{A*B} = R{A}N{B} + I{A}3{B} takes the imaginary
part of the field, we can write the observation as
Al Ripict  Hpiwt
. 4 . .

: : ~ : 3{Eab.k}
Alnp.k m{pnp,k} “s{pn,,,k}

[‘%{Eab.k} ]

(46)

where n,, is the number of probe pairs. The relationship between

the observation and state in Eq. (46) has now taken the linear
form

7 = Hyxy, 47)

where the observation z;, observation matrix H;, and image
plane electric field state x; are defined as

Al

= : s (48)
Al, 4

R{pix} 3{Puc}

ER{pnl,.k} “ms{pnp.k}
_ | M{Ewi}
= [ H{Eawi} ] 0

For any given image plane pixel, we can now estimate the elec-
tric field state at the k’th iteration by taking the left pseudo-
inverse of H.

X = (H{H)"H] 2, 51)

where X, is the least-squares estimate of the electric field state.
The batch process estimation method has proven to be reliable in
high-contrast imaging, but suffers from losing information over
the control history. There is no choice but to take a full set of
probes at each iteration.

6.2 Filtering Method

A more recent form of estimation employs a Kalman filter to
estimate the field.' In its initial formulation, the state estimate,
X, and the observation matrix, H,, are identical to those con-
structed in Sec. 6.1. The construction of x; and H, define
the form of the controller update, I';_;, used to extrapolate
the field estimate given the control applied in the last iteration,

Jan—-Mar 2016 « Vol. 2(1)



Groff et al.: Methods and limitations of focal plane sensing, estimation, and control in high-contrast imaging

uy_;. With the observation and control update matrices defined,
the five canonical discrete Kalman filter equations are given by

xi(=) = O Xy () + Tiougy,s (52)
Pi(=) = O Py (+)PL_, + Qi (53)
Ky = Py(=)HIH P (=)HT + R, (54)
Xe(H) = (=) + Kz — HiZe ()], (55)
Pr(+) = [Pu(=)7" + HYRTH] ™ (56)

where dynamics modeled in the state extrapolation, x;(—), are
applied in Eq. (52) by the state transition matrix, ®;_;, and the
prior state estimate, X;_; (+). The covariance Py is extrapolated
along with the state estimate in Eq. (53) and serves as the path-
way to balance the process Q;_; and sensor noise R, in the cal-
culation of the optimal gain K; in Eq. (54). The (—) indicates
that the state and covariance are extrapolated until a measure-
ment update is applied, denoted by a (+) in Egs. (55) and
(56). This optimal gain effectively weights measurement uncer-
tainty against state uncertainty in the field when a measurement
update z; is applied to the state estimate and its covariance in
Eqgs. (55) and (56). In the first implementation of the filter by
Groff and Kasdin,'® Q is defined by an estimate of the error on
the DMs state and R, is defined by the detector noise. More
recent versions modify the filter to an extended Kalman filter
and augment the state with an estimate of the bias.”® This
has the advantage of using the control history to estimate the
incoherent component of the field dynamically with the state,
providing a measurement of the true coherent contrast indepen-
dent of exo-zodiacal light. Groff and Kasdin'® also point out
that the bias estimate will detect planets over the course of
the control history. Such a bias estimator is fully developed
and experimentally tested in Ref. 27. This extended Kalman
filter successfully demonstrates the ability of the filter to sepa-
rate incoherent components of the image and successfully
detects planets injected into the experiment using a star-planet
simulator.

Common to both versions of the Kalman filter is the freedom
to reduce the number of probe pairs to as low as a single pair per
iteration. Since a measurement update at any time step is guar-
anteed to not increase the covariance of the state estimate from
a prior iteration, this allows us to demonstrate that the control
law is reaching a contrast target with the minimum number of
measurements required by the estimator. The guarantee that
new updates cannot make the estimate covariance worse also
tends to yield better stability in the control as the controller
reaches higher contrast levels and becomes noise limited. The
improved stability at high noise levels has been demonstrated
in Ref. 16, and the performance of such filters has been dem-
onstrated by Riggs et al.?® at extremely high contrast levels, with
initial comparisons to the batch process method presented in
Sec. 6.1.

7 Sensing the Wavefront with Pair-Wise
Probing
In Sec. 6, we took the probe images required to estimate the

field for granted. We now define the probes and analyze their
impact on the quality of the image. DM probes are a set of
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perturbations, ¢;, that must be chosen to modulate the intended
control area well to maximize the signal in the image plane and
to guarantee a well-conditioned observation matrix, Hy, associ-
ated with that set of probes. As was discussed in Sec. 6.2, this is
the only factor that can result in measurement updates making
the estimate worse over time.

These shapes are traditionally based on analytical functions
for which we know the Fourier transform. Following Give’on
et al,'* we will simplify the problem of coverage/shape of
the dark hole by choosing symmetric rectangular regions that
span the region we wish to estimate and, for the sake of choosing
the shape only, assume that the operator is a Fourier transform
(i.e., C{-} = F{-}). We define an offset pair of rectangles of
width w, and height w, by convolving the rectangle function
with a set of Dirac delta functions, §(-). Shifting the rectangles
off axis in the image plane by a distance a in the x dimension
and a distance b in the y dimension, the intended probe field in
the image plane from a pupil plane perturbation, A(u, v)¢(u, v),
is defined as

F{Ap} = F{A} * crect(w,x)rect(wyy)
#[6(x = a) +6(x + a)] + [6(y = b) + 6(y + b)]
= F{cAsinc(w,u)sinc(w,v) cos(au) cos(bv)},

(57)

where c¢ is an arbitrary amplitude applied to the shape. Inverse
transforming, the shape we would like the DM to approximate is

¢ = csinc(w,u)sinc(w,v) cos(au) cos(bv). (58)

This particular probe function is very simple to use during con-
trol because the size and location of the probed area in the image
plane in A/D units are exactly equal to the spatial frequency
applied to the DM in units of cycles per aperture. Thus, to pro-
duce a probe pair, we simply specify the desired spatial frequen-
cies in Eq. (58) and apply +¢;(u, v) and —¢;(u, v) to get I and
I7, respectively. To get multiple probe pairs, one simply applies
phase shifts to one of the cos functions in Eq. (58).

It is important to note that Eq. (57) should not be used to
construct the observation matrix. This should be done by solv-
ing for the DM commands from Eq. (58) and applying them to
the true system Jacobian in Eq. (9). The PSF will alter the field
so that the field from a DM shape given by Eq. (58) will not have
exact unit amplitude and the edges of the rectangle will extend
by one radius of the PSF. The distribution will still be relatively
uniform, most likely modulating each pixel in the dark hole.

8 Error Analysis for Pair-Wise Probing

With DM probe shapes defined in Sec. 7, we analyze the vari-
ance of the electric field estimate given bounding cases of meas-
urement noise. We begin with the effect of stellar shot noise on
the estimate, demonstrate how zodi and dark current drive us to
brighter probes, and determine the order of magnitude limit on
how bright we may make the probes. We then determine what
strategies can be used to obtain the most precise and accurate
electric field estimates possible. In all cases, we propagate
the uncertainty in the probe through the batch process estimator
to more easily see the effect of noise in a single iteration. Since
this amounts to a measurement error, the noise value will be
identical in the Kalman filter and the optimal gain will more
heavily weight information from the prior iteration. Thus, the
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batch process estimator represents the worst-case contribution of
probe errors to our achievable contrast.

8.1 Stellar Shot Noise

Here, we will calculate the variance in the electric field estimate
at a given pixel in the presence of only stellar shot noise. By
utilizing probe shapes that actuate the entire focal plane evenly
in field (such as the products of sinc and sine functions men-
tioned in Sec. 7), we can safely apply these calculations to
all pixels in the correction region.

We choose probes p;; in the k’th iteration such that they
have the same amplitude p = |p; | V j.

pj.k = peia/«" =p COS(ejyk) + lp sin(@_iyk), (59)

where 0, ; is an arbitrary angle. Uniformly distributing the phase
of the probes, 6, ;, within [0, 7] to get good coverage of the real-
imaginary plane, we substitute Eq. (59) into Eq. (46) to rewrite
the observation as

Al cos (a 4+ n”n_””) sin (a +r "”n_n”
P P
= 4[) . . ER
. : ] : ] E/ |
Al cos (a—l—ﬂ:"’;—_> sin (a—i—ﬂ"ff )
P P

(60)

where a is some arbitrary phase angle offset, and Ey and E; are
shorthand for R{E,; (x.y)} and S{E,; ;(x,y)}. respectively.
We define Hy as above (such that H = 4pH,), to obtain our
new state estimate equation.

N 1 _
X= i (HYHy)'HY z. 61)

With some algebra, it can be shown that

HYH,

nh_l 2 np_j nﬁ_ll H le—j
>l cos (a+7r " > Lo osin |2 ataT

np_ll : n,=j n,=l . 2 n,=j
> Lo 2sin {2 (a+ﬂ » >l sin at ==

:n_l’{l 0} (62)
2101])

We can then write Eq. (61) as

n,—1 n,—j
{ER] _Li o Al cos(a—|—7rn—]) )
4pn, Z;figl Al; sin(a+ﬂn§’l—:'>

»
E;

We now want to calculate the variance 62{-} of the real and
imaginary parts of the electric field, which is dependent on
the variance of the Al;‘s and any uncertainty in p, o*{p}.
Assuming that 6>{AI} = 6?{Al;} V j, we can write
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n,—1 —j
o cos? (a—&—ﬂM)

BRI 0 Rt e

ok | ]

() @enll] ()

The second term in Eq. (64) is a fractional error in E; and Ej,
equal to the fractional error (or uncertainty) in p, o{p}/p. The
most likely sources of this error are DM calibration errors and
DM motions not being produced as they were commanded (e.g.,
hysteresis, electronic drift, etc.). It is likely that these systematic
issues can be better understood by consistent use of the same
probes and empirical calibration. The rest of this derivation
will focus on the fundamental Poisson limit, implicitly assuming
that 6{ p} is sufficiently smaller than p such that the first term in
Eq. (64) dominates.

The fundamental limit to measurement of E; and E; comes
from Poisson statistics on the intensity measurements in
Eq. (64), which is rewritten (without the 6{p} term) as

H{Eg) = 0 {E,} = (iy(i)azw}. ©65)

4p np,

Referencing Eq. (44), we evaluate Eq. (65) in the two limiting
cases of large, p > E,, and small, p < E, probes. In the case
of large probes of equal amplitude, Eq. (44) can be approxi-
mated as

where we drop the (x,y) notation and write |p;| = p since we
assume the probes are of equal amplitude. The Poisson statistics
of any of the intensity measurements come from the number of
detected photoelectrons in that measurement (photoelectrons
being assumed for most Si detectors), so it is necessary to relate
physical units to /. In high-contrast coronagraphy, it is common
to relate the intensities measured throughout the image plane to
the peak of an image with no occulter, 7, which is determined
by integration time per intensity measurement ¢ and a flux Fp
(expressed in detected photoelectrons/s) such that

ka = Fpkt' (67)

The intensities at each image plane location where the probes
are being applied can be assigned a contrast value C, which
can be used very generally to relate to any intensity measured,
such that
1= Cka = CFpkt, (68)
where the units of 7 are explicitly photoelectrons. In general, we
assume that ¢ is the same for every intensity measurement in
the probe sequence and that I, is unchanged by the probe
DM settings (which is accurate on the order of p? /1), s0
that only C changes through the probing sequence.

To determine the variances relevant to Eq. (65), we define C,,
such that
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p2 = Cprktv (69)

where C), has a contrast interpretation, e.g., C, = 1078 corre-
sponds to probes that add 1078 intensity in the image plane.
With this formulation, the units of p? are photoelectrons. For
an individual intensity measurement, Poisson statistics dictate
that the variance in photoelectrons® is equal to the expected
number of photoelectrons. For large probes,

o*{I} ~ p?, (70)

remembering that the units of both sides of this equation are
photoelectrons?. Since any Al is the difference of two inten-
sities, each with variance ¢*{I}, the variance of a differential
measurement is given by

G2{Al} ~ 22, (71)

Revisiting Eq. (65) for large probes, the variance of one com-
ponent of the field in units of photoelectrons is given by

) ) 1\2/2 ) 1
o*{Eg} = o*{E/} ~ i) \n, 2p Pt (72)

np p

The photoelectron unit is difficult for the notation to carry suc-
cinctly because photoelectrons are mathematically dimension-
less, as Poisson statistics are counting statistics that apply
only to the number of detected photoelectrons, not to the accu-
mulation of electric charge. The key to following these units in
Eq. (72) is that the (1/4p)? term carries 1/p? with units 1/pho-
toelectrons, while the variance term 2p? carries units of
photoelectrons?, so that their product yields the final answer
in photoelectrons. The photoelectron normalization implicitly
carries the integration time ¢ and flux Fpy used to give units
to p? for Poisson statistics in Eq. (69).

It is instructive to define a new term, a dimensionless noise-
equivalent contrast N, as one metric of the noise in the final
electric field estimation. The electric field estimates, Ep and
E;, are expressed in units common to the measurement used
in the probe sequence, so the appropriate normalization for
E% and E7 is the same as the intensity image /I, from
Eq. (67). Analogous to Eq. (68), N, is defined such that

1
=, (73)
2onpkt

N, = (6*{Eg} + c*{E;}) /I x
where we recall from Eq. (72) that 1/(2n,,) carries units of pho-
toelectrons, so that N, is truly dimensionless (a ratio).

Er and E; are computed from a sequence of probe images,
comprising n,, pairs. Each pair is taken with two images using
integration time ¢. We define the total time for the entire probe
sequence to be

Lot = 21t (74)

P

allowing us to write the noise-equivalent contrast as

1
N, = ) (75)
Fpkttot

A sample calculation of this would be where ¢, is chosen to be
long enough that the peak intensity reaches 10° photoelectrons.
This 7, time is broken into 2n,, separate integrations with time
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t, with DM modulation in between images, allowing a calcula-
tion of Eg and E;. The noise-equivalent contrast N.. is then 10~°.
In other words, f,, is the time required to reach SNR=1 at
a contrast level defined by N,.

Wavefront control, in particular, offers an excellent use of N,
with an interpretation in terms of contrast. Assuming an initial
contrast of |Eg|* /I, = 1077, and a set of large amplitude probes
that produce N, = 107, the measured field will have real
and imaginary components given by Ep = R{E,} + 6z and
E; = 3{Ep} +6; with an expectation of E[6} + &7]/Ix =
N.. If wavefront control operates on the electric field and
removes the measured field, E; + iE;, then the residual field
is —8z and —§;, such that the contrast after correction has
an expectation value E[(6% + &7)/I,x] = N,. Thus, the noise
equivalent contrast N, is the limit to how far wavefront control
can reduce the contrast for a given electric field estimate.

The form of Eq. (75) is very different from the Poisson
noise associated with measurement of the contrast itself,
in that the noise does not depend on |Ej|. The relevant
comparison is that the electric field variance is N, =
E[|(Eg + iE;) — Eo[*]/(Fpktior), which is distinct from the
standard deviation of measured intensity o{E% + E7}/I.
The calculation of 6{E% + E7} is algebraically laborious,
but leads to an answer whose variance is twice the direct-
measurement Poisson limit. Integrating over the total time
toi» the variance is given by

o{E} + E7}/(Fyt) = 2Y2(|Eo|*2n,) ' 2 [ (Fptior). — (76)

In other words, relying on a sequence of large probe measure-
ments to determine E and E; allows accurate determination of
the complex nature of E, independent of the brightness |Ey|?
but poorer determination of |Ey|* than by simply measuring
the unprobed intensity itself.

Another observation about N, is worth revisiting. While the
N, limit from Poisson statistics is a fundamental limit, the frac-
tional error ¢{p}/p from Eq. (64) also affects the maximum
improvement from a single probe estimate. For example, con-
trast improvements by more than a factor of 10, such as the pre-
vious example of a factor of 100 from 1077 to 10, may not be
possible if there are 10% errors on p.

s

8.2 Stellar Shot Noise Using Small Probes

Section 8.1 dealt with large probes, where p? > |E,|>. While
the intermediate case where p? ~|E|> does not have much
algebraic simplicity, the case of small probes, p? < |Eo|?, is
simple to express. For small probes, the individual measured
intensities, and therefore their Poisson noise terms, are domi-
nated by |E|?; based on Eq. (44) and analogous to Eq. (66),
the probe intensity can be approximated as

Iji ~ |E0|2. (77)

Following the same logic as with the large probes, the noise
equivalent contrast N, for small probes becomes

1 |Ep|?
N, = | °2| : (78)
Fpkttot p

Since, by construction, small probes have |Ey|>/p? > 1, this
noise is far larger than the corresponding large probe N ..
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8.3 Other Noise Sources

We can expect there are other sources of measurement noise that
will degrade our estimate quality. Here we will include the
effects of zodi or exozodi light Z (in units of photoelectrons,
integrated over time ?), detector dark current D (also in units
of photoelectrons), and readout noise variance 6%, (in units
of photoelectrons?). Large probes are assumed, as they will
have the least noise in the electric field estimates. A measure-
ment Al comprising 7.y, stacked exposures per probed image,
where n,, exposures together accumulate ¢ integration time,
will have a variance

?{AI} =206*{1;.} + 26°{Z} + 26*{D} + 2nex,0i0n
=2p? +2Z 4 2D + 21,67 (79)

The factors of 2 in the variance components all come from the

two intensity measurements, each containing 7, individual

exposures, which form a A/ measurement. Normalizing by
Ly, we find

1 (1 N Z+D +2n6Xp0%0n> '
Fpkttot

N, = (80)

p

We can now see some new properties of the variance of the
electric field estimate. We see that increasing the probe bright-
ness p reduces the variance contribution from incoherent back-
ground (zodi, dark current) and readout noise. If probes can be
made arbitrarily large, N, will approach the fundamental limit
from stellar shot noise alone.

8.4 Maximum Allowable Probe Brightness

Earlier we found that brighter probes (larger p) reduce the vari-
ance of the electric field estimate. However, if we make p too
large, higher-order terms of the Taylor series neglected in Eq. (3)
will become the dominant source of error in Eq. (44). Here we
will find the maximum allowable intensity of a probe before
nonlinear terms become significant relative to the nominal con-
trast level, |E, ;|*. For simplicity, we will once again evaluate
a single pixel in the image plane. Rather than assuming we
already know the probe p;, we will treat the additive electric
field change of the j’th probe at the k’th iteration as a general
value AE| ;. In this case, the least-squares solution in Eq. (46) is
rewritten as

Al R{AE ;}  3{AE;}
) _4 ) .

: : : ¥ Ea
Alnp,k ER{AEnF,k} S{AEnP,k} { b’k}

%{Eab,k}] .

1Y)

We will now evaluate the effect of higher-order terms appearing
in the observations, z;, and whether we can compensate for
those nonlinear terms by constructing the observation matrix,
H |, with the full nonlinear model. Expanding about the DM sur-
face as we did in Eq. (3), a higher-order expansion at the DM
plane is given by

) - . 1 i 1
Epup_ke“ﬁk ~E|1 + l6¢k - 56(]&% bl §5¢i + 55452 s

(82)
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where E = Epquke"‘/’kfl. Applying a specific positive or negative
probe to the expanded field in Eq. (82), the focal plane electric
becomes

Eab.k(i&ﬁk) = C{Epup.kei¢k}

N 1.
i 1 .
$§C{E5¢;k} + HC{Eéqs;{k}. (83)

We expect the average change in electric field AE between the
positive and negative probe to be

Eopi(+6¢; k) = Eqp 1 (—0¢; 1)
2

i -

AE =

The higher-order terms in Eq. (84) can become significant com-
pared to Gu for sufficiently large probe amplitudes, |56¢; i|.
Since these terms will be observed in the measurement, we
evaluate their contribution to our measurement, A/ ;, for a sin-
gle probe. Calculating Al;; up to fourth order in ¢, we find

Al = |Ej i = [Ej il
= AR{(E sp - Gittj ) }—2R{ (G C{E5¢%k}>}
= 29 (B CLESH,)))
3 RCESE, ) CLiEs},))}

1 -
+ = R(Gruji CLESP; 1)} (85)

where (-,-) still denotes the complex inner product. With the
observation nonlinearities in place, we now determine what non-
linear terms exist on the right hand side of Eq. (81) by expanding
one row of the observer. Recalling that R{A}R{B} +
3{A}3{B} = R{(A,B)}, the nonlinear terms from a probe
that appear in the observer are given by

AR{(AE; 1, Egp i) } = 4R{(Ep s Grjie) }
2 -
=3 (B CLIES 1)} (86)

Subtracting Eq. (86) from Eq. (85), the unmodeled residuals in
the measurement that are not eliminated by constructing the
observation matrix with a nonlinear model are given by

A[err = _2%{<Gku1,k7C{E5¢?k}>}
3 R{(CLES, ). CLiES], 1)}
+ £ (G, CLESH ). )

By constructing the observation matrix, Hy, from the full non-
linear model, we do indeed eliminate some of the dominant
nonlinear residuals in our probe images. Had we simply used
AE;; = Guj; to construct Hy, the estimate would have
been subjected to all of the nonlinear residuals in Eq. (85).
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However, Eq. (87) shows us that not all higher-order terms are
canceled in A7 by using a nonlinear model to construct Hy. This
is because formulating the observer fundamentally requires that
we define a linear system. Thus, we have mitigated errors in
our estimate from unmodeled measurement nonlinearities, but
we have not eliminated them entirely. It is the nonlinear
residuals of Eq. (87) that define the maximum allowable
probe amplitude. Recalling from our development of Eq. (83)
that |Gyu; | = \C{E5¢j,k}|, the first term in Eq. (87) will be
of order |6¢7,| and the other two are both of order [6¢; .
Making the simplifying assumption that the fifth-order terms
will be small compared to the third -order term, Eq. (87) can
be approximated as

A[err ~ _zm{<Gkuj.k’C{E6¢5,k}>}' (88)

We now wish to determine the contrast level at which the
unmodeled nonlinear residuals of Eq. (88) begin to dominate
our estimate for a given probe amplitude, p = Gu. Although
C{E&qﬁ%k} does not simplify in terms of G and u, we approxi-
mate it as C{Eégbﬁk} ~ (Gyu;;)? in Eq. (88) to get an order of
magnitude estimate of this floor. Thus, the dominant nonlinear
error in our estimate will scale as

Al = |Gruji = [C{ESD; 1} (89)

If the peak contrast of the probes (assuming all n,, probes have
equal amplitude) in the k’th iteration is 107, |Gyu;,| ~ 1072
and our unmodeled nonlinear errors are at the ~107° contrast
level. We therefore cannot expect to control below that.
Solving in the other direction, if we are probing a dark hole
at a contrast of 1072, the maximum probe contrast is 1076, Tt
is worth mentioning that uncertainties in the probe shape will
result in imperfect cancelation of nonlinearities in the observa-
tion. The effect of probe uncertainty is minimized by measuring
the probe amplitude directly as explained in Ref. 29, but its
phase must still be obtained from the model. One can always
use Eq. (89) as a starting point for wavefront correction simu-
lations to hone in on the maximum allowable brightness of
the probe.

9 Conclusions

We have outlined what we consider to be the current best prac-
tices of focal plane wavefront probing, estimation, and control.
Both the EFC and stroke minimization control laws are model-
based, and their performance relies heavily on the accuracy of
the Jacobian used to define the transfer function between DM
actuation and image plane field. When stroke minimization
algorithm is implemented with an equality constraint in a quad-
ratic cost function, it is identical to EFC when its desired field is
set to zero. If the true inequality constraint were applied, the two
algorithms would behave differently, but stroke minimization
has not been implemented in this fashion to date. More
differences appear in the broadband control cases, with stroke
minimization more explicitly allowing a greater set of degrees of
freedom since each wavelength has its own Lagrange multiplier.
That is not to say we could not attempt weighting the broadband
EFC algorithm, but a multiparameter optimization is inherent to
the formulation of windowed stroke minimization. However, the
biggest difference in the control solution for a specific dark hole
comes in the user’s choice of contrast/field target, how often the
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Jacobian is relinearized, and how the regularization parameters
are chosen at each iteration. The choice in size and location of
the dark hole also plays a major role in performance, but the
outcome is highly dependent on the initial state realized in
any individual optical system.

Control will only be as accurate as the wavefront estimation
and probing steps. Here we have described the original batch
process method as a segue to more advanced Kalman filtering
algorithms. So long as the Kalman filter’s observation matrix is
well conditioned, we are guaranteed that the estimate will not
get worse over time, a very important fact as the dark hole
reaches higher contrast levels and noise plays a more significant
role. Since the estimator will be limited by the probes we apply,
we propagated measurement errors through the estimator to
quantify how they limit our contrast performance. Various noise
sources and uncertainties bound the brightness of the probes,
suggesting that brighter probes are better until nonlinear errors
in the estimate become significant.
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