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Abstract. The timely and predictable cost of the Lynx x-ray mirror assembly (XMA) is an essential element of
the mission concept. We present an analytic model for the cost, schedule, and risk for the manufacture of a
generalized system of many parts, and apply it to preliminary data of the manufacturing process for the XMA.
The manufacturing process is modeled as a series of G/G/w queues. The optimization of the manufacturing
process, to minimize total process time, comes from the selection of the value of w, the number of servers
performing each step in the manufacturing process, to avoid bottlenecks and minimizing idle servers. This analy-
sis also includes the effects of finite process yield on cost and schedule. The cost model is parameterized by the
various elements of cost, including the production time, thus linking the cost and schedule models. The system
of coupled equations is the cost and schedule model. The process data that must be collected on the manu-
facturing process during the ongoing technology development process such as process times, yields, and

distributions is identified. We conclude with the next steps that will be taken to make this analysis more complete.
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1 Introduction

Each of the four major decadal missions currently underway to
support the Astro 2020 decadal review' has a major challenge to
overcome for that mission to be determined to be executable.
The existential problem is called the big fundamental problem
(BFP) of the concept. The BFP for Lynx is the cost-effective
manufacture of the Lynx x-ray mirror assembly (XMA) of suit-
able quality to meet the science objectives of the mission. The
XMA is made of ~150,000 parts, 40,000 mirror elements, and
111,000 posts.? The technology to manufacture optical elements
and posts is making excellent progress and is reported elsewhere
in this volume.? The technical maturation is necessary but not
sufficient to make Lynx viable. A strong case for the determi-
native cost and schedule for the revolutionary XMA is needed to
provide sufficiency to the argument. This paper describes the
analytic model and a few example of the analysis possible to
demonstrate that such quantitative and determinative manage-
ment is possible and executable.

All large hardware programs face the challenge of managing
cost and schedule. In order to quantitatively manage any aspect
of system performance, be it image quality, mass, power, ther-
mal margin, or production schedule, an analytic model is
needed. The technical performance metrics have models and
tools to manage, but not schedule or cost. This paper will
show that there is a solid analytic framework for establishing
a rigorous management process to produce the XMA in a
cost-efficient and effective manner. Failure to imagine this ana-
Iytic model makes the analysis of strategic options and risks
challenging at best and cost and schedule an exercise in report-
ing, not proactive management. The model to be developed in
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this paper will be used during Lynx’s development to analyze
the schedule and cost for risk and allow for optimization later in
Lynx’s maturation.

This paper presents the derivation of the system of equations
that predict the cost and duration of manufacture of the XMA.
Analysis of the resulting system of equations identifies which
parameters must be measured and determined during the
ongoing technology development efforts. The uncertainties in
the various parameters and the model assumptions are identified
as the risks to cost and schedule performance.

The foundation of the modeling is an area of operations
research known as queuing theory (QT). Operations research
began in World War II and is described as “math and physics
in service to the corner office.”® This is certainly such an appli-
cation. Specifically, QT is the study of lines or queues that are an
integral part of modern life.* Queue or QT has been applied to
health services,” telephone network design, and many other
important and interesting applications.®

The development of the approach begins with the introduc-
tion of useful notation and nomenclature, in which we will frame
the development of the model. We will also introduce the def-
initions of the relevant terms for our discussion. The model
development begins by building on some initial results pre-
sented in earlier work expanding the illustrative, but nonrealis-
tic, example of an entirely deterministic XMA manufacturing
process. The assumption that the production line is governed
by a deterministic processes is then relaxed and the effects of
variance are introduced, generalizing the model. The model
for the cost and duration of an optimized process is examined
in light of the Lynx technology development. This paper con-
cludes with lessons that can be gleaned from the model even at
the early stage of development and quantification. Especially
important will be the identifications of the key assumptions
and values that exert the greatest influence on cost, duration,
and risk.
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The modeling and analysis of cost and schedule is not
entirely new to the x-ray community. The process used to
develop and optimize the AXAF (Chandra) x-ray calibration
test schedule and efficiency’ is very similar to the approach
discussed in this paper.

2 Nomenclature and Notation

The model being developed is based on QT, which is a well-
developed area of applied mathematics and field of operations
research. This section is intended to serve as a primer to intro-
duce the QT nomenclature and notation that is used elsewhere in
this paper.

The basic building block of our model development and
analysis is the concept of a queue, a frequent occurrence in
modern life. Such examples are airport security, fast food res-
taurants, rental car counters, and the infamous call centers for
help with purchased items and services. Consider Fig. 1, a
queue/server system, which will be shortened to being called
a queue. Figure 1 shows that incoming elements, from the
i — 1th process, are processed in i’th server, and once processed,
they move on to the next stage of the process, the i + 1th step. If
the server is not busy, the element or part is processed and moves
on to the next step. If the part from step i — 1 arrives and the
server is busy, the incoming part waits in the queue or line
for its turn. The mean population of the queue, the mean number
of parts waiting for service, denoted L, is a key parameter in
this analysis. The components of this simple system are the ele-
ments or parts, the queue where waiting is done and the server or
service node or machine, which processes parts for the i’th step
and sends them on to the next step.

Figure 2 introduces some additional components to the sys-
tem, namely the arrival pattern or distribution in time of the
arriving element, denoted A, the distribution of service or proc-
ess times, which is denoted B and the number of servers w.
Kendall® introduced a useful and compact notation to describe
queues. In the eponymous notation, the queue is written A/B/w.
(In more advanced analysis, the Kendall notation contains more
parameters, but for present purposes the three attributes are suf-
ficient.) The dummy variables A and B will be replaced with
symbols representing various options of the statistical properties
of the arrival and service processes. As we will see, the optimi-
zation of the time to manufacture is the story of how the w is
chosen for each of the process steps.

The model of the production process is depicted in Fig. 3.
This model is a series of queues that are serial, as a manufac-
turing process has a specific order, which cannot be altered.
In this model, there are n steps and n shipments or transitions
from one process to the next.

Queue

Incoming elements from process i-1

OO0 O OO

Service Model

for Process i

Server

Queue

Arrival pattern, A

OO0 O 0O

@O0

Service pattern, B

Fig. 2 Kendall’s notation, A encodes the arrival distribution, B enco-
des the service time distribution, and w is the number of servers.

3 Deterministic Arrival and Service Times

The first model we will develop is the most naive model
of an n-step process. Namely, the arrival model and the process-
ing time models are deterministic (no variance) and denoted as
D. In this case, a deterministic model means a specific time for
each operation. We can now write compactly and efficiently that
our process is made up of n D/D /w; queues, where the index i
representing the ordinal value of each step.

3.1 Total Process Time: Determinative Process

Consider the time for a part to complete the n step process,
this is called the total processing time, or Tp and is given

Tp=1t+s1+5+s+ -+, +5,, (1)

t; and s; are the individual process and shipping times and i = 1
to n, indexing each step.

Tp is the processing time for a single element or unit, but
Lynx will have to make many or Q units. To calculate the total
process time for Q units Ty, we need to know which process
step has the largest process time. Define T as

T =max(t;,i € [1,n]). ()

If a part is sent to the manufacturing process as soon as the first
server is available, at some point in the process, the stream of
parts reaches the step with the longest process time, the so-called
gate, or rate limiting step or process. When the parts arrive at this
gate, they arrive faster than they can be processed, and a queue
builds up until the Q’th part has arrived. Using Egs. (1) and (2),
an expression for T, can be written down as

Server

Processed elements to process i+1

o O

Fig. 1 Basic elements of a queue.
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Process Step 1

i @ JI |

Process Step 2

Process Step n

s O 5 : Cstop

Fig. 3 Production line as a series of A/B/w queues.

G-1 n
To=Y ti+s;+0Tg+s6+ > ti+s,. 3)
i=1 i=G+1

where in the process, the gate G occurs does not matter, addition
is associative so Eq. (3) is generally correct. Equation (3) can be
rearranged to give

TQ—Zt—i-Zs + Q0T¢. )

i#=G i=

In light of the formulation of Eq. (4), the name “gate” for the
maximum process time becomes clear, it is the one process time
that is multiplied by the number of parts to be made, dominating
Ty. If we wish to reduce T, Eq. (4) shows us that the best
investment is increase the number of servers that perform the
process at the gate, effectively reducing the T;. If the number
of servers is w, then T, is given by

o= +Z +Ze. )

i#G i=

Equation (5) is a good answer if the reduced gate time is much
larger than all the others, namely

T—WG>> max(t;;i # G). (6)

A simple and powerful lesson to be gleaned from this very naive
analysis is that knowledge of the values of the #; allow for the
most impactful investment. For example, if a second copy of the
gate server is bought, the effective gate time is cut in half for the
cost of that server. If we did not know this and bought a second
complete copy of the production line, we would get essentially
the same result, a reduction in 7', by a factor of two, but at a cost
of all of the equipment, a far less cost-effective strategy!

In order to formulate a more general solution, namely when
Eq. (6) is not true, a change in notation is helpful. The author
hopes that the reason for the change in notation, while not
immediately obvious will be clear to the reader very shortly.
Recall Eq. (1), which is rewritten
TP=t1+s1+t2+s2+-~~+l‘n—|—sn. (7)
Relabel the #; according to their magnitude, denote the maxi-
mum value as I{1ys the second largest process time as I(2}s
and so on, with the smallest value being t;,,. The use of the
curly braces is used so a reader is not confused with rank sta-
tistics traditional notation, which uses parentheses around the
index and the index 1 indicates the minimum. The use of the
braces hopefully will remind the reader that this is a reverse

at a single location. This co-location enables rapid transit
from one step to the next and avoids transportation as the
rate limiting process. Let > _;s; = S, then Eq. (7) can be written

Tp=> ti+S. (8)
i=1

Equation (5) can be rewritten as
_ 9y

Ty + trp + 8. C))
wi1} zz:: {}

Recall the condition, Eq. (6), and now consider increasing the
value of wyy) until #5y > fv‘{—'l’}, now the second longest process
time is the gating process and Eq. (9) is no longer correct and
I{7y is the gate, so an investment should be made in buying more
servers at that step, and we have to also invest in addition servers
for the original gate or it might regain its place as the longest
step. We need to find wy;y and wy,, such that the effective proc-
ess time is smaller than 73, namely

t t
{—I}Zﬁ:l{3}. (10)
Wiy Wiy
Hopefully, the reader can see the pattern that is emerging.
Additional copies of the servers for the mitigation of gates or
bottlenecks should consider how many levels b of bottlenecks
are to be mitigated by investment.

If there are b bottlenecks to be mitigated, then Eq. (10) can be
generalized to

t t tip
0 ST an
Wiy Wi W{b}

The mitigation of b bottlenecks gives T as

b
t
Z 4 ~ Qi + Z fy + . (12)

i=b+1

Equation (12) gives us the means to examine key programmatic
questions, such as, “What is the investment needed to meet the
schedule duration requirement of D?” or “What investments
must be made to decrease the production time?”

Equation (12) can be used to derive a conservative estimate
of T . Consider the limiting case of Eq. (12), which is the equal-
ity; all of the terms in the first summation in Eq. (12) can be
replaced with 7,1y, which gives the inequality

rank index. The assumption that all of the shipping times are Ty < Z Hpry + Qtipiny + Z iy +S. 13)
small implies that all the XMA manufacturing will be done i=b+1
Journal of Astronomical Telescopes, Instruments, and Systems  021016-3 Apr—Jun 2019 « Vol. 5(2)
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Equation (13) simplifies to

n

To <(Q+Db)tppny+ Y tiy +S. (14)
i=b+1

By definition

So we have
Z tiy < [n = (b +2)]tp4y- (16)
i=b+2

Substitution of Eq. (16) into Eq. (14) now gives

To < (Q+ bty +[n—(b+2)|tpsny +S. (17)

Collecting terms gives
TQ < (Q+n— l)l{b+1}+5. (18)

In order to meet the hypothetical requirement on manufacturing
span of D, we desire Ty < D, this will also be met if

(Q+n—1)t{b+]}+S<D. (19)
Equation (19) can be solved to give

D-S

t{b+l} <m. (20)

Equation (20) provides a means for estimating the w; as will be
shown in Sec. 8 of this paper.

3.2 Cost of Servers: Deterministic Case

Let c; be the cost of the server for the {i}th step, so the total cost
of servers, Cg is

b n
:ZW{i}Ci+ Z Ci. (21)
i=1 i=b+1

Using Eq. (11), the wy;, can be expressed in terms of the 7;:

Wiy = { iy } @)
l Lty

where the square brackets ([x]) indicate that the value x is
rounded up to the next larger integer, as machines come in inte-
gral quantities. So Cg can be written as

zb:{ i) ] Z ¢ 23)

Hb+1} i=h 11

4 Statistically Distributed Arrival and Service
Times

Up to this point in the discussion, all of the process times #; or
t(;1 and the s; have been considered as deterministic quantities.
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This section extends the deterministic analysis to accommodate
stochastic arrival and service times. We introduce the additional
concepts and results and develop the calculation for general dis-
tributions of arrival and service times including the effect of
variance. Considerations of problems of this class are in effect
the “bread and butter” of QT, and we have a rich heritage of
results from which to draw on.

The foundation of QT is known as Little’s rule’™!'" and is
written
L =W, (24)
L, =W, (25)
and
1
WS W (26)

where L is the mean number in the queue/server system, A is the
mean rate of arrivals, u is the mean service rate, W is the mean
waiting time, and the subscript g refers to population and wait
time in the queue, awaiting service. If the value of W, = 0, the
results of the deterministic queues are recovered. A seminal new
parameter is also introduced here, called the server utilization,
p and is defined

=2 27)
U

Small values of p mean that the arrival rate, 4 is small compared
to the service rate, and the server is not really very busy. If the
values of p are large, then the server is busy most or all of the
time, and there is a wait for service, or what we have termed a
gate or bottleneck.

For a single server, if the arrival model is described by
a Poisson process and the service time is exponential, the
queue is described as M/M /1, where M means Markovian.
For this case, it can be shown in Ref. 12 that L, is given by

L,= . (28)

Result [Eq. (28)] states that to keep queue populations small, no
bottlenecks, that p should be small. Figure 4 shows a plot of

=
o

Mean number
in queue, Lq

N W & U1 0 N 0 O
PR L PR

[y

0 T T T T T T T 1
0 01 02 03 04 05 06 07 08 09 1
Server utilization, p

Fig. 4 L, foran M/M/1 queue, Eq. (28).
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Eqg. (28) and shows that as p increases L, diverges as p — 1. Our
strategy to minimize T’y has been to avoid bottlenecks, in which
parts are idle, now are described by the continuous variable p.

The statistical model of service times is not general, so con-
sider now a M /G /1 queue, where the G meaning a general stat-
istical distribution model of service times, characterized by its
mean y, and standard deviation in service time o,. L, for this
queue/server system, M/G/1, is knowing as the Pollazcek—
Khintine (PK) formula'>'* and is given by

_w (29)
T 2(1-p)”

The PK result, Eq. (29), explicitly shows that service time vari-
ance does increase the mean number that are in the queue.
Moreover, Eq. (29) informs us that we must measure and control
og and avoid large values.

The QT literature also provides a result for L, in the
case where both arrivals and service times are generally
distributed. ' L, is described by the closed form approximation

2 1 C2 C2 CZ
Ly (2 SE) (), (30)
1—p 2 1 + p*C?

where CZ means the coefficient of variance of x, which is the
ratio of the variance to the mean squared. So C2 and C2 the coef-
ficients of variance in service time, subscript s, and the variance
in arrival time, subscript a, are given, respectively, by

o2

Ch =735 = ol 31
()

and
o2

Cg =2 = oﬁ/lz. (32)

Substitution of Egs. (31) and (32) into Eq. (30) gives

2 1 2,2 272 2,2
ng<P )( +"s*‘)("a t";’;). 33)
1—p 2 14 posu
We want to operate with p < 0.4, using this and the definition of
p, Egs. (27) and (33) can be rewritten as

L o (PR [016(07 + 0ioy) + o7 + o
1T \1=p 2(1 4 p*oep?) '

(34)

Examination of Eq. (34) illustrates the key role of variance in the
service time, in increasing L, and pushing the process to a
bottleneck. Equation (34) also shows that variance in the arrival
rate does matter but is of secondary importance. The implication
of Eq. (34) is quite clear. Variance in service and arrival times
can and should be planned for in any manufacturing schedule.
Underestimation of these quantities will cause schedule delays
and cost increases. In other words, risk is not that the manufac-
turing process for Lynx, or any other project, will have variance
in service times. The risk lies in underestimation of that quantity.
Proper measurement and estimation of the distribution of vari-
ance in service time is clearly one of the lessons from this
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analysis that needs to be passed to the technology and manufac-
turing development efforts.
The result for L, for an M /M /w queue'® is found to be

P w
L,= o(p) PZ’ (35)
w!(1—p)
where P is given
p = 1 36
(P)o = w-1 (wp)" | (wp)" * (36)
m=0 w! wi(1—p)
The result for W, for a G/G/w queue is given as!’
G/G/w M/W/w Cg + C%
Wy ~ Wy T . 37

Using Little’s rule, Eqs. (25) and (37) give the expected queue
population Lg for a G/G/w queue:

., Pp)p (CiACE
T Tl = p)? 2 ’

L (38)

However, complicated a numerical process, Eq. (38), gives us
the means of making a lower bound estimate for the number
of servers w; at each of the b bottlenecks chosen for mitigation.
Namely, we seek the value of w; that gives L, <1 given the
other parameter values. Moreover, it can be seen that more serv-
ers do help and are a means to mitigate risk in the knowledge of
the C% + C2.

We are now in a position to calculate T for the case of a
production line made up of G/G/w queues, with b bottlenecks
mitigated. Recall the result for an M /M /w queue, Eq. (18),
mitigated to the b’th level:

To<(Q+n—1tyy+S. 39)

To derive the result for a production line made up of n
G/G/w queues mitigated to the b’th level, the gating time
t{p4+1; Will be replace with the total waiting time for the gating
process, which includes the queue delay and call it I'. Using
Little’s rule, Eq. (26) we get

1
r=w,+ . (40)
Hib+1}
W, is given by Eq. (25) and using Eq. (38) for L, gives
w =Ly Polp)p (CitCF
T2 wl(1 = p)? 2
P w C2 C2
_ 0(:0) ,02 a+ C§ ) (41)
w!(l—=p) 2
So the expression for I' is now and Eq. (40) becomes
1 Py(p)'p (C2+C?
r= 1 o) ”2< ) @2)
Hipey  wi(l=p) 2

Equation (42) can be rewritten, if we recognize that the mean
processing rate, i, 1) is the reciprocal of the mean processing
time, allowing us to write

Apr—Jun 2019 « Vol. 5(2)
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w 2 2
PO(p) 14 <Ca+cs). (43)

w!(1 —p)? 2

Substitution of Eq. (42) into Eq. (39) gives the final result for
TQ for G/G/w queues, mitigated to the b’th level as

I'=t4n +

To<(Q+n—1Ir+S5. 44

Using the equality gives the lowest upper bound, namely,
To=(Q+n—-1r+S. (45)

Substitution of Eq. (43) into Eq. (45) gives the result for 7', as

i (7)) -

TQ: (Q+n—1)|:tc+
(46)

Equation (46) shows that like in the deterministic case, the cen-
tral role of the value of the gating process time is shown as well
as the effects of variance on arrival and service times.

5 Cost Model

The analysis of schedule gives us the optimal number of servers
and knowing the cost of each. It is a triviality to add that up to
give the server cost, but that is not the whole cost of LMA pro-
duction. The other elements that must be included are:

e LOE is the level of effort costs such as management,
facilities rent, and utilities.

o [ is the cost of installation of the servers and other factory
modifications, clean room, electrical service, etc.

e U is the cost of operation of the factory, utilities.

e M is the cost of equipment maintenance.

e R is the cost of the raw materials.

e P is the cost of personnel working (not management).

The cost of XMA production is of course the sum of all these
cost elements, namely

Cxma =C;+R+1+U+ M+ P+LOE. (47)

We can now estimate how each cost element changes with
respect to number of servers W = > 7| w; and the time to pro-
duce the XMA T. It is assumed that the cost of raw materials R
is fixed with respect to production strategy. Cg is the cost of
servers is from Eq. (21):

n

b
Cg = Zw,-c,- + Z ci. (48)
i=1

i=b+1

If we assume an average cost, to install servers,  is proportional
to the number of servers W letting the average cost of installa-
tion /, we get

1=1W. (49)

The cost of utilities U depends on the need from each server,
times the number of server, and times the duration of the
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production effort. If we assume the average cost of utilities
for a server is u, then U is

Assuming the mean cost rate to maintain a server is m, then
M is

M = mWT,. 51)

Personnel costs are also proportional to the number of servers
and the time to manufacture, so if the cost rate per server is p,
then P is

P = pWT,. (52)

The level of effort cost is proportion to the duration, if we call
the LOW cost rate of [, then

LOE = IT,. (53)

Substitution of Egs. (48)—(53) into Eq. (47) gives

b n
Cxma = Zwici + Z ci+R+IW+uWTy +mWT,
i=1 i=b+1

+ pWTy + ITy. (54)

Equation (54) can be rearranged and factored to give

b n
CXMA = (ZW,’C,'—" Z Ci+R> +7W

i=1 i=b+1
+(u+m+p)WTy +ITy. (55)

For any given set of w;, the term in the parentheses in Eq. (55) is
a fixed value, so Eq. (55) can be written

We have seen above generally that if W is larger, there are more
servers, but then T, will decrease, this means that it is possible
to find a minimum value for the cost to manufacture the XMA
Cima- The actual numerical calculation will have to be done
once all the values of then relevant parameters have been
determined.

6 Effects of Process Yield

Any real process is not perfect, and therefore has finite yield,
where the yield for each step i is the probability that process
i produces and acceptable result. The yield may be thought
of as a probability of success for each process i and of course
has the value from O to 1. Note that a part that fails to complete
step ¢ must be remade. This rework costs money in new material
and time, causing T, to increase, which as we have seen in
Eq. (56) also increases cost.

The yield for step i, y;, is the probability of success, of step i,
the probability of failure is the complement or 1 — y; and since
each process must product Q successes so the mean number of
failures for each step i, f;, is

fi=0(1-y). (57
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The total number of parts needing rework is the sum of Eq. (57)
over all process steps i

F:;fi:;Q(l_yi)' (58)

The probability of success or failure of a process is described by
the binomial distribution, with Q large and 1 — y; small, means
small a rare set of failures so the special case of the Poisson
distribution applies. The standard deviation of F, op, is

or = 1|01 —y). (59)
i=1

Using Eqgs. (58) and (59), the number of additional parts that
need to made to achieve Q successes with the associated risk
that still more will be needed can be calculated. To achieve
the required confidence, in general, more parts than F alone
will need to be made. For the purposes of this discussion,
assume to get the desired level of confidence we must make
F + voyp parts, which of course can be written as F + v/F.
So the total time needed to make the LMA is the time to make
O + F + v\/F parts. Using Eq. (46), the total process time is

TXMA: <Q+F+U\/f+n—]>

Po(p)"p (Coi+C3
o (0] + “

which is also

Q

Py(p)*p (Ci+C?
{IG+W!(1 _p>2< > >} +S. 61)

TXMA—{Q[Hizn;(l-yi)ﬂ M} +n_1}

Equation (60) or Eq. (61) gives a formulation for the time to
manufacture the LMA, the cost model, Eq. (56) when T is
replaced by Txyma gives

The system of Eq. (60) or Egs. (61) and (62) is the system that
gives the cost and schedule estimates for the manufacture of
the LMA.

7 Application Example: Determination of w;

This section gives a simple example of how the results of this
analysis can be applied to the problem of manufacturing the
XMA. In discussion with the GSFC Optics Team,'® very
early estimates of the process time for each step have been
make. The results are presented in a table of ¢; as Fig. 5.

Since this is very early in the development of the XMA
manufacturing process, we will use results from Sec. 3, the
determinative manufacture process, as the distribution of proc-
ess times has not been characterized. To get an estimate of the
w;, the number of copies of servers for each step i, we start with
Eq. (19) which gives the inequality
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|
Calendar time |
Step Name [h] |
1|CNC Grinding 4
2|Lapping (buffing & measurement on FizCam) 8
c 3|Slicing 3
g 4|Coarse edge treatment 1
S 5|Etch 1
:,?_, 6|Polishing (FizCam) 20
2 7|Smoothing (Fiz Cam) 4
E 8|CNC Grinding 4
2 9|Trimming 2
10|Final Etching 3
FizCam measurement, IBF, Fiz Cam
11|Measurement 3
w0 12|Cleaning, and oxidizing the backside 10
£ 13|Sputter Ir coating 10
8 14[Anneal 10
15|Fiz Cam Measure, IBF, Fiz Cam 3
16|Measure height and locations of 8 spacers 0.5
17|Fabricate 8 spacers 4
e 18|Attach spacers and cure 2
2 Measure radial heights of 8 spacers and trim to
4 19|tolerance 3
Eo Align mirror by fine-grinding guided by
< 20|Hartmann 4
Bond mirror and cure, return to Step 16
21|complete module 10,

Fig. 5 Table of preliminary XMA manufacturing steps and process
times.

(Q+n-1ty +S<D. (63)

Equation (63) can be rewritten with the effective value of
process time of the b’th step as

t
(Q—ﬁ—n—l)%—kSSD, (64)

as a means to estimate the value of w for mitigated step. We
know from earlier in this paper, that all of the longer steps

must have their w large enough that all tfv—” < i‘v—”: This gives a
simple means of evaluating the w and determining b. We select
the limit case (equality) of Eq. (64) and solve for w; giving

(Q+n-1)p5 . (©5)

Wi
An interesting question can be posed using Eq. (65), “if we want
to complete XMA production in less than D (to have planned
margin), what are the w; for those cases?” To address this ques-
tion, D is replace by D(1 — f), where is fractional reduction in
time. Equation (65) now becomes

t;
(Q+n—1)D_S. (66)

Wi

Let D = 3 years, further, we will assume that the shipping times
are not the rate limiting steps so S ~ 0. From Fig. 5, we can see
that n = 21 and we know that Q is 37,4921 Figure 6 shows the
evaluation of Eq. (66) for values of f from 0% to 50%.

For each value of D(1 — f), the total number of servers has
been determined and plotted against D(1 — f) and shown in
Fig. 7.

The trend line fit to the data in Fig. 7 is a quadratic. This
result informs us that the sensitivity (partial derivative of dura-
tion with respect to cost) can be expected also to be quadratic as
many costs are proportional to the number of servers. Such
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Step # |t, [hours] w; forDI%-F)
f=0% | f=10% |f=20% f=30% | f=40% | f=50%

16 0.5 1 1 1 2 2 2
4 1 2 2 2 3 3 3
5 1 2 2 2 3 3 3
9 2 3 4 4 5 5 6
18 2 3 4 4 5 5 6
3 3 5 5 6 7 8 9
10 3 5 5 6 7 8 9
11 3 5 5 6 7 8 9
15 3 5 5 6 7 8 9
19 3 5 5 6 7 8 9
1 4 6 7 8 9 10 12
7 4 6 7 8 9 10 12
8 4 6 7 8 9 10 12
17 4 6 7 8 9 10 12
20 4 6 7 8 9 10 12
2 8 12 13 15 17 20 23
12 10 15 16 18 21 24 29
13 10 15 16 18 21 24 29
14 10 15 16 18 21 24 29
21 10 15 16 18 21 24 29
6 20 29 32 36 41 48 58

Fig. 6 Number of servers needed for each manufacturing step for
varying values of f.

350

300

250

Number of servers

1 1.5 2 2.5 3 3.5
Years to complete XMA

Fig. 7 Number of servers needed to time to complete XMA in varying
times.

proportional costs are floor space, utilities, manufacturing
personnel, and of course, the server and installation costs them-
selves. These investments decrease T the time to manufacture
the XMA. The optimal point can and will be determined once all
the relevant parameter values are known.

8 Summary and Next Steps

The main objective of this work was to demonstrate that a credi-
ble model for the cost and schedule for production the Lynx
mirror assembly exists. The proof of this is on offer in results,
Eq. (60) or Eqgs. (61) and (62).

During the development of the model, the derivation has
identified relevant parameters and laid out the role of uncertainty
or variance in these quantities as they affect cost and schedule.
This analysis has shown that uncertainty in schedule and process
time increases the time to manufacture the LMA and increases
cost.

As the technology development proceeds, all of the relevant
process times must be measured along with the distribution of
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process times, so that we can properly go from ¢; to #y;, that is
rank ordering the processes correctly. All of this must be done in
the process and technology development period.

This analysis is not complete. The next factor to be included
in the analysis will be the availability of the servers, namely how
often are they operating or and not in a state of repair or cali-
bration or other off line status. Inclusion of finite availability will
further refine the selection of the w; or numbers of servers
needed. Future work will also include the application of propa-
gation of errors to develop a formal “error budget” for the cost
and schedule models. The error budget approach will enable the
further rigorous refinement of estimates of risk in cost and
schedule.

Preliminary application of the model with early process data
shows that the relationship between the number of servers and
time to complete the XMA is quadratic, as shown in Fig. 7.

It is the happy conclusion of this work that it is possible to
write down a model for cost and schedule and carry out a tol-
erance analysis on the value and assumption yielding a nuanced
causal estimate of risk. This model gives us insight into how the
XMA manufacture process works, so we can understand how
the process will fail in terms of cost and schedule. Armed with
this model and its descendants, the Lynx project will truly be
able to manage the process of XMA manufacture and not just
report on it.
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