PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
As semiconductor devices shrink in size to accommodate faster processing speeds, the need for higher resolution beam-based metrology equipment and beam-based writing equipment will increase. The electron and ion beams used within these types of equipment are sensitive to very small variations in magnetic force applied to the beam. This phenomenon results from changes in Alternating Current (AC) and Direct Current (DC) magnetic flux density at the beam column which causes deflections of the beam that can impact equipment performance. Currently the most sensitive beam-based microscope manufacturers require an ambient magnetic field environment that does not have variations that exceed 0.2 milli-Gauss (mG). Studies have shown that such low levels of magnetic flux density can be extremely difficult to achieve. As examples, scissor lifts, vehicles, metal chairs, and doors moving in time and space under typical use conditions can create distortions in the Earth's magnetic field that can exceed 0.2 mG at the beam column. In addition it is known that changes in the Earth's magnetic field caused by solar flares, earthquakes, and variations in the Earth's core itself all cause changes in the magnetic field that can exceed 0.2 mG. This paper will provide the reader with the basic understanding of the emerging problem, will discuss the environmental and facility level challenges associated in meeting such stringent magnetic field environments, will discuss some of the mitigation techniques used to address the problem, and will close by discussing needs for further research in this area to assure semiconductor and nanotechnology industries are pre-positioned for even more stringent magnetic field environmental requirements.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The increasing performance of high resolution surface analytical instruments, in the nanometer range, requires suitable site conditions, in order to achieve the design performance specifications. Due to our practical experience in selling these instruments over the last twenty years we have established a well defined procedure, which is used for the characterisation of new instruments, as well as for the assessment of customer site conditions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The paper presents a review of generic vibration criteria used for vibration-sensitive technical facilities. The paper reviews the logic behind and evolution of the Vibration Criterion (VC) curves, originally known as the "BBN" criteria, and discusses the background of a generic criterion in common usage for nanotechnology, currently denoted NIST-A. The criteria are compared with representative types of research equipment and activities.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
High resolution imaging systems (i.e., SEM, TEM, FIB, etc.), diagnostic medical equipment (i.e., EEG, EKG, EMG, MRI, etc.), scientific instruments and computer equipment are all susceptible to various sources of electromagnetic and radiofrequency interference (EMI & RFI). Simply stated, optimal tool performance is the requisite practice in nanotechnology, medical and research environments. Compromised and degraded performance due to elevated ambient EMI/RFI environments that exceed the instrument's susceptibility thresholds is clearly not acceptable. In the United States uniform EMI/RFI susceptibility testing methods and procedures are not mandated by law. Although the FCC, Part 15, regulates RF interference with radio services and electric equipment from intentional and unintentional sources, it does not address susceptibility issues directly. Therefore, confusion abounds as each manufacturer presents their unique method to measure and document the ambient EMI/RFI environment to ensure optimal performance. VitaTech will examine the various frequency bands and waveforms of non-ionizing electromagnetic (EM) spectrum, review basic near and far-field EM theory, identify problematic EMI and RFI sources, and address the units of measurement and susceptibility. Examples of EMI/RFI instrument susceptibility will be presented for analysis with actual EMI/RFI site surveys and power frequency simulations. The paper examines several EMI/RFI industry standards including SEMI E33-94 and European Union EN 61000-6-1 and EN 61000-6-2. Finally, corrective strategies and costs to attenuate and control elevated EMI/RFI environments will be presented such as magnetic and RF shielding systems, active cancellation systems, RGS/EMT conduits for electrical power distribution, self-canceling MI cable systems and other mitigation techniques.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The paper examines the methodologies and evaluation criteria advocated by the U.S. Federal Transit Administration (FTA) and Federal Rail Administration (FRA) used to determine whether or not a proposed alignment for a transportation project adversely impacts affected land uses, such as research & development and high-technology manufacturing. The criteria in question are applied as limits on vibration and noise at sensitive receiver locations. Both short-term construction and long-term transportation operations are typically considered, with the latter being the focus of this paper. A case study is presented of a proposed transit system that passes through four different soil zones, the operational characteristics that are required to generate a vibration level equal to the FTA/FRA advocated level of 65 VdB re: 1 micro-inch/sec, and the range of variability of the acceptability of the vibration conditions when considered in terms of third-octave bands compared to vibration criterion (VC) curves that are used as the design performance targets of vibration-sensitive facilities.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The integrity of the research and overall production yields within nanotechnology cleanrooms and semiconductor production spaces is partially dependent on the cleanliness of the air within the space, and the ability of building systems technology to remove contaminants from outside air. As semiconductor manufacturers seek higher and higher levels of cleanliness in manufacturing spaces, research environments are also expected to provide comparable levels of cleanliness. The literature shows that airborne contaminants are typically classified as viable and non-viable particles and as airborne molecular contamination (vapor phase). This paper reviews the characteristics of these contaminant classifications and their occurrence in outside air. This paper also examines the unique characteristic of airborne molecular contaminants to convert to ultra fine and fine particles (10 to 100 nanometer diameters). Modeled building systems performance is examined for each type of airborne contaminant and compared to current and projected cleanroom criteria and standards.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The label "nanotechnology" covers a host of research applications, some of which require vastly more costly infrastructure than others. Basic engineering issues, research themes, and design choices determine the budget of the nanotech facility. When designing a nano lab, the users and the architect face a number of decisions about the performance of the space and the costs associated with achieving the performance criteria. These choices and recommendations are outlined in this paper.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
A major issue facing researchers today is the extremely fast rate of change in scientific instrumentation. Along with this, is the need to design research buildings that are flexible enough to support the changing needs of the science inside. The answer to this problem lies in the development of a proper design process. This paper will outline the major tenants of a successful design process and will then use The Biodesign Institute at Arizona State University as a working-example of a real-world solution to design challenges such as the creation of specialized spaces for nanotechnology and other highly sensitive technologies. Resolution of design requirements and the resulting EMI/RFI, Vibration and Noise levels of the Biodesign Institute will be presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Designing buildings to house nanotechnology research presents a multitude of well-recognized challenges to architectural and engineering design teams, from environmental control to spatial arrangements to operational functionality. These technical challenges can be solved with relative ease on projects with large budgets: designers have the option of selecting leading-edge systems without undue regard for their expense. This is reflected in the construction cost of many nanotechnology research facilities that run well into the hundreds of millions of dollars. Smaller universities and other institutions need not be shut out of the nanotechnology research field simply because their construction budgets are tens of millions of dollars or less. The key to success for these less expensive projects lies with making good strategic decisions: identifying priorities for the facility in terms of what it will is--and will not--provide to the researchers. Making these strategic decisions puts bounds on the tactical, technical problems that the design team at large must address, allowing them to focus their efforts on the key areas for success. The process and challenges of this strategic decision-making process are examined, with emphasis placed on the types of decisions that must be made and the factors that must be considered when making them. Case study examples of projects undertaken at the University of Alberta are used to illustrate how strategic-level decision-making sets the stage for cutting-edge success on a modest budget.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Vanderbilt University has realized the design and construction of a 1635 sq. ft. Class 10,000 cleanroom facility to support the wide-ranging research mission associated with the Vanderbilt Institute for Nanoscale Science and Engineering (VINSE). By design we have brought together disparate technologies and researchers formerly dispersed across the campus to work together in a small contiguous space intended to foster interaction and synergy of nano-technologies not often found in close proximity. The space hosts a variety of tools for lithographic patterning of substrates, the deposition of thin films, the synthesis of diamond nanostructures and carbon nanotubes, and a variety of reactive ion etchers for the fabrication of nanostructures on silicon substrates. In addition, a separate 911 sq. ft. chemistry laboratory supports nanocrystal synthesis and the investigation of biomolecular films. The design criteria required an integrated space that would support the scientific agenda of the laboratory while satisfying all applicable code and safety concerns. This project required the renovation of pre-existing laboratory space with minimal disruption to ongoing activities in a mixed-use building, while meeting the requirements of the 2000 edition of the International Building Code for the variety of potentially hazardous processes that have been programmed for the space. In this paper we describe how architectural and engineering challenges were met in the areas of mitigating floor vibration issues, shielding our facility against EMI emanations, design of the contamination control facility itself, chemical storage and handling, toxic gas use and management, as well as mechanical, electrical, plumbing, lab security, fire and laboratory safety issues.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Stringent vibration requirements must be met for laboratories housing sensitive equipment for nanotechnology research. This paper provides guidance to the designer in the selection of structural systems to limit vibrations to acceptable levels. Comments are also made on site selection, building planning issues, and cost-effective solutions. The concepts proposed are illustrated with examples of the structural systems developed for nanotechnology buildings at the University of Alberta.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The Center for Integrated Nanotechnologies (CINT), located at Sandia National Laboratories in Albuquerque, New Mexico, is one of five new Department of Energy Nanoscale Science Research Centers (NSRC). The CINT vision is to become a world leader in nanoscale science by developing the scientific principles that govern the design, performance, and integration of nanoscale materials, with emphasis on exploring the path from scientific discovery to the integration of nanostructures into the micro and macro worlds.
The CINT design team faced the challenge of creating a state-of-the art research facility that is functional, flexible, and reflects the local history and environment. Drawing inspiration from Pre-Columbian Chacoan culture, the resulting design integrates scientific spaces with "communal" spaces to encourage the cross-discipline interaction that is essential to scientific research, particularly in the area of nanotechnology. Careful attention to design also produced a facility that conserves resources in the demanding Southwestern climate.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
A new clean room facility is in progress at the Division of Solid State Physics / Nanometer Consortium (FTF) at Lund University. On site measurement from road excitation at a speed bump located at a distance of 25 m from the site and from main roads situated at a few hundred meters distance revealed high vibration levels. A complicating matter was found in high lateral vibration levels at the 4 Hz range. Various set ups using piling and dig out were investigated and found not to improve the situation. A vibration isolation system with very low natural frequency was found to be the only way left to use the site. A modular set up has been used such that the system can be either 1-stage isolated or 2-stage isolated.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Buildings for nanoscience research have become increasingly popular on university campuses. Such research facilities provide numerous opportunities in terms of attracting research groups from diverse educational and scientific backgrounds that allow for cross pollination of various research disciplines and are on the forefront of scientific discovery and innovation. The California Nanosystems Institute (CNSI) that is currently under construction in the University of California campus at Los Angeles will be such a state-of-the-art research facility. The design of this facility had to overcome a number of challenges, in order to assure that the vibration environment would be acceptable for the range of anticipated research activities and developing space layouts that address incompatible uses.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Details the processes of locating a site and designing and analyzing a structure suitable for nanotechnology research at an urban university. All sources of vibration must be identified, defined and assessed to determine the impact they will have on the completed structure, and whether or not the end-users' allowable vibration tolerances will be exceeded. Provides analysis and comment from the owner, architect and engineering consultants.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The recently built Advanced Measurement Laboratory at the National Institute of Standards and Technology (NIST) provides a great step forward for that organization with regard to its research environments. Vibration and temperature control were among the most critical concerns expressed by the researchers, and considerable attention was given to meeting their objectives. Critical laboratory environments called for vibration to be controlled to amplitudes no greater than 25nm rms displacement and 3.1 μm/s, and as much less than that as feasible. Some of the spaces required thermal stability controlled to within +/- 0.01° C. The design phase involved research projects examining ways in which those goals might best be achieved. The critical rooms met or exceeded the temperature and vibration control requirements. Some spaces were found to have displacement amplitude on the order of 10 nm, velocity amplitude of 1 μm/s, and acceleration of 19 μg, all well below the design goals, making this one of the world's finest research spaces.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Chalmers University of Technology in Gothenburg, Sweden, aims for a major contribution to research and development in the field of microelectronics. One step is taken by creating a new centre for R&D. The building holds in total 18000 m2 of research facilities, including a cleanroom of 1000 m2. The cleanroom is incorporated together with media supply and air conditioning as a separate unit within the main building. Due to extreme requirements on low vibration levels, the structures are completely separated. A second facility with similar requirements on low vibration levels is created inside an old building for physics research. The issue of vibration reduction and isolation from the surroundings is the subject for this paper. Requirements on maximum vibration levels are described as well as the vibration sources involved. Major sources are walkers and tramway vibration. The shortcomes of the original constructions and the measures taken to improve the dynamic performance of the floor structures are reviewed. Vibration reduction methodology includes damper design and installation as well as dynamic simulation using finite element calculations. Finally, the results from verifying measurements are presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Several settings arise in the design of vibration control for sophisticated spaces in which it would be desirable to significantly increase the material damping of concrete, primarily to reduce resonant response. The paper presents an overview of a recent study addressing the various means by which concrete damping can be increased. A variety of methodologies are discussed, and the most efficacious approaches are examined in some detail. The easiest approach involves the introduction of polymer admixtures into the concrete when it is mixed. However, the resulting dynamic properties become dependent upon both temperature and frequency, and these must be considered when selecting the appropriate polymers to use. Experimental results are summarized, and some of the appropriate applications (as well as the limitations) of polymer usage are presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The development of sophisticated nanotechnologies requires ultra-low vibration research and production environments. Human footfall is a significant source of vibration and if its effects are not assessed accurately during the design of facilities workspaces may be rendered unusable for certain sensitive equipment. Several semi-empirical methods for predicting footfall induced vibration are widely used in the USA, Canada and the UK. These methods were based on research available in the 1970s and are written with hand calculation in mind. Whilst they provide a basic level of checking for floors similar to those against which they were calibrated, extensive research over the past 25 years coupled with modern design-office computer analysis capabilities enable improved methods of greater accuracy and more general applicability to be developed. For this reason Arup has developed new 'performance based' prediction procedures based on fundamental principles of structural dynamics and incorporating recent and comprehensive experimental research into footfall forces. The methods are not restricted by the approximations and inaccuracies inherent in the old empirical approaches, and extensive calibration against field measurements has shown it to be far more reliable than the other methods currently in use.
This paper presents the new methodologies, which are consistent, physically intuitive and applicable to the majority of structures of any construction material. In order to demonstrate the improved reliability of predictions made by the new methods, vibration levels predicted by this and other methods (AISC, BBN, and Steel Construction Institute (UK)), are compared with measurements from buildings with various types of floor construction.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
There are several instances in the literature in which particular positions are taken regarding the nature of the floor supporting sensitive equipment such as advanced electron microscopes. Assertions are made that one methodology is better than another at reducing vibrations. However, very little experimental evidence has been provided to support those positions. This paper presents the results of an experimental in situ study of several slab configurations at a single location-the site of a nanotechnology facility that was about to be constructed at the University of Alberta. Three configurations were constructed: (a) a large solid slab of moderate thickness; (b) a smaller slab "island" of greater thickness (900 mm) surrounded by a thinner slab, both resting directly on soil and separated by a gap; and (c) another island of the same dimensions, but resting on four concrete piles. The three locations were instrumented and measurements taken allowing comparison of the performance of these configurations at attenuating ambient vibrations and vibrations due to a nearby heel-drop impulse. The ranking of the three must be based upon excitation type and frequency range of concern.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Generic vibration and noise criteria (VC & NC) exist for semiconductor facility design purposes. This paper proposes to extend the criteria for use in nanotechnology facilities considering the higher level of sensitivity of new equipment without manufacturer's vibration criteria. Specifications are derived for air-borne and structure-borne excitation. The new criteria are referred to as 'VC-NT and NC-NT' curves and proposed to be used for the design of new laboratories and nanotechnology facilities. Three case studies are used to validate the criteria.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.