We've established a nonlinear multimodal imaging system that incorporates stimulated Raman Scattering (SRS), multiphoton fluorescence (MPF), and second harmonic generation (SHG) to explore the connections between metabolic activities and the distribution of metabolites in cells and tissues. Furthermore, we've devised the Adam-based Pointillism Deconvolution (A-PoD) and Correlation Coefficient Mapping (CoCoMap) algorithms, enabling a deeper insight into the simultaneous recording and regulation of various metabolic processes within super-resolved images of nanoscale Regions of Interest (ROIs). In our pursuit of specifically identifying signals originating from distinct subcellular organelles, we've introduced a pioneering clustering algorithm known as Multi-SRS reference matching (Multi-SRM). This approach has the potential to improve early disease detection, prognosis, the evaluation of therapeutic effects, and our comprehension of the mechanisms underpinning aging and biomedicine.
|