Paper
1 November 2016 The effect of the three non-collinear chips on the imaging of infrared remote sensor
Shaofan Tang, Libing Jin
Author Affiliations +
Proceedings Volume 10157, Infrared Technology and Applications, and Robot Sensing and Advanced Control; 1015729 (2016) https://doi.org/10.1117/12.2246816
Event: International Symposium on Optoelectronic Technology and Application 2016, 2016, Beijing, China
Abstract
With the development of high-resolution imaging infrared remote satellites, high resolution imaging and wide swath width are required. Now one effective way to get a wide imaging swath is to increase the length of infrared chip linear array. Restricted by the number of sensor elements on each chip, field butting of the multiple chips is often adopted to obtain a wide of the field of view (FOV). However, since each infrared chip is actually an array in physical structure, and there is also an outer cover for each chip, it is really impossible to place the multiple infrared chips directly as a straight line on the focal plane, and three non-collinear arranging style is adopted instead. Due to the control stability of the drift angle, a non-collinear arrangement of the three chips on the focal plane, the undulation of the ground elevation and so on, the sub-image separately captured by each infrared chip cannot directly from as an integrated image scene. In this paper, the image mode of the three non-collinear Infrared chips is proposed. What is more, some key factors that affect the imaging quality of the three non-collinear infrared chips are discussed in detail, including the control of the drift angle, the placement of the three infrared chips on the focal plane, the terrain undulation and so on. The scales of the effect caused by those factors are calculated in the paper. In order to test and verify the methods given in the paper, flight mission of sun synchronism circle orbit is taken as an example for simulation. Some practical conclusions are arrived at. When the drift angle is out of control, it can bring the effect of the drift angle on the overlapping degree about pixel number, and relative distortion variation tendency was given based on altitude difference.
© (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Shaofan Tang and Libing Jin "The effect of the three non-collinear chips on the imaging of infrared remote sensor", Proc. SPIE 10157, Infrared Technology and Applications, and Robot Sensing and Advanced Control, 1015729 (1 November 2016); https://doi.org/10.1117/12.2246816
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Infrared imaging

Infrared radiation

Infrared sensors

Image sensors

Optical sensors

Remote sensing

Sensors

Back to Top