|
I.INTRODUCTION:CHEOPS is an ESA Class S Mission aiming at the characterization of exoplanets through the precise measurement of their radius, using the transit method [1]. To achieve this goal, the payload is designed to be a high precision “absolute” photometer, looking at one star at a time. It will be able to cover la large fraction of the sky by repointing. Its launch is expected at the end of 2017 [2, this conference]. CHEOPS’ main science is the measure of the transit of exoplanets of radius ranging from 1 to 6 Earth radii orbiting bright stars. The required photometric stability to reach this goal is of 20 ppm in 6 hours for a 9th magnitude star. The CHEOPS’ only instrument is a Ritchey-Chretien style telescope with 300 mm effective aperture diameter, which provides a defocussed image of the target star on a single frame-transfer backside illuminated CCD detector cooled to -40°C and stabilized within ~10 mK [2]. CHEOPS being in a LEO, it is equipped with a high performance baffle. The spacecraft platform provides a pointing stability of < 2 arcsec rms. This relatively modest pointing performance makes high quality flat-fielding necessary In the rest of this article we will refer to the only CHEOPS instrument simply as “CHEOP” Its behavior will be calibrated thoroughly on the ground and only a small subset of the calibrations can be redone in flight. The main focuses of the calibrations are the photonic gain stability and sensibility to the environment variations and the Flat field that has to be known at a precision better than 0.1%. To this purpose, a significant effort has been placed in the development of a CHEOPS calibration system. This system produces very stable illumination patterns for CHEOPS: either a very uniform illumination on the Field of View of the instrument or an artificial star that can be steered to any point of the field of view. The signal produced by CHEOPS can be measured and a model of the gain/flat field as a function of the different environmental parameters will be built. The main calibrations to be made with the test bench are:
The main validation tests done with the test bench will be: III.TEST BENCH DESIGNThe calibration will be performed using the CHEOPS flight model. CHEOPS will be enclosed in a Thermal Vacuum chamber (TVC) that will reproduce the flight conditions, in particular the temperature variations along an orbit. The test system has been designed to illuminate CHEOPS from the outside of the TV chamber. This has made the setup much less expensive and risky. However we have to cope with the fact that one cannot guarantee that the position and direction of the test beam remains stable with respect to the payload during the tests. To put things simply, test system is a large collimator with different sources for the different calibrations. Essentially there are 2 instruments modes for the test system: a uniform illumination mode for the flat field calibration and a single point source mode to simulate a star and make photometric tests. In addition, in the point source mode there are a tip-tilt tracking mechanism and a pupil tracking mechanism. The most critical performance of this calibration system is the photometric stability of the beam it feeds into CHEOPS. Optically the calibration system features
The focal moduleThis module is made of two elements. Only one can be at the collimator focus at any time.
More details on this design can be found in [5] IVFLAT FIELDINGOne of the challenge of the CHEOPS calibration phase is to produce a good flat field of the instrument that will allow to mitigate the satellite jitter. The specification is to reach 0.1% precision for this flat field. This is achieved using an integrating sphere to produce a uniform illumination. In addition to classical white light flat fields, we are going to measure “coloured flat fields” in contiguous 16nm bins. Based on this data set it shall be possible to reconstruct the best flat fields matched to the spectral type of each star observed. To check that the uniformity of the Integrating sphere was sufficient for our needs we have started to measure it by scanning the output port with a photometer and found that it is not as uniform as we need (see figure 4). To mitigate this we will model the actual field distribution and use this model when reducing the CHEOPS calibration data. That in turn has forced us to design a reticule that we can fit over the output port to reference our model to a well-defined location on the port. It has been checked that the rest of the test bench elements will not affect the flatness of the field. Neither contamination nor aberrations nor coatings non-uniformities have will alter the beam uniformity to a significant amount. IVPUPIL STABILIZATIONThe stability of optical power as measured by CHEOPS is determined not only by the stability of our calibration light source (see next section), but also by the stability of the optical coupling between the calibration beam and CHEOPS. It turns out that if there is a beam shift between bench and CHEOPS and if the field in the bench pupil is not homogenous variation of this coupling happens. This variation will depend on:
Because of the need to have an unresolved point source to simulate the star, we are using a monomode fiber. Therefore, the field distribution across the pupil will be close to Gaussian. This strongly varying distribution creates a high photometric sensitivity to relative motions that is unacceptable. Thus an apodizer has been introduced in the beam. As described in [5] this apodizer is optimized in white light assuming the sensitivity of the whole optical chain from the source to the detector. The homogeneity obtained is not enough to ensure the stability of the flux thus it is necessary to have a pupil stabilization mechanism. To this purpose a set of 4 fiducial stars placed at 90° on a small circle around the reference star have been added. A mask is placed closely placed in front of these fiducials. The purpose of this mask is to make the pupil illumination of this fiducials as contrasted across the pupil as possible. So if the focal plane is tilted, it shifts the energy distribution across the pupil (Fig 6, center), this shift is going to be maximal for the half-moons. One of the half-moons will see a flux increase while to opposite one will see a decrease. Keeping the photometric ratio constant between the up and down, respectively left and right, half-moons forces the bench and CHEOPS pupil to be co-aligned. Since only tilts are involved, the image of the center star and the fiducials stay put in the CHEOPS focal plane. To implement the pupil centering scheme, the focal plane module is mounted on a hexapod. We are using two degrees of freedom (DOF) to rotate the focal plane around the fiber tip. We are using another two DOF’s to move the focal plane sideways to simulate the satellite pointing wobble and a last DOF to move the source along the optical axis to adjust the focus. VSUPER STABLE SOURCEFor CHEOPS calibration system, we have chosen to use an LDLS [7] as primary source because its 10’000K color temperature offers both a flat spectrum across the visible and a high radiance that allows a sizable amount of power to be coupled even in a monomode fiber. We have measured that this lamp has a luminous power output variation in the 1-3% p2v range, i.e. 10’000 to 30’000ppm over 6 hours which is the duration over which the CHEOPS performance is specified. It is obvious that a lamp like that cannot be used without having its flux stabilized. For this reason, the Observatory of Geneva has developed a luminous power control system that transforms the LDLS in what we call Super Stable Source [6]. Over the course of several hours the source is stable to a couple of ppm (figure 8). VIMEASURED PERFORMANCESThe calibration system has been accepted in the summer of 2016 and moved to the CHEOPS integration facility at the University of Bern. Here are some of the performances measured at this stage: The wavefront of the collimator measured after alignment <90 nm rms. This does not include the apodizer and the necessary optical density, but is compliant with our 150 nm wavefront error budget. The focal plane image is: Tip-Tilt mirror servoThe flat folding mirror is mounted in a custom tip and tilt mount high resolution actuators. In combination with a high resolution autocollimator (Newport LDS-Vector) measuring its direction with a resolution of 0.1 microradians we build a PC-based servo system that has a typical time constant of 1 second and a precision of 0.1 microradian Tip-tilt control with the payload in the loopIn order to compensate for the thermomechanical movement of CHEOPS we are using the payload images to directly measure the measure the relative tip-tilt between our calibration beam and CHEOPS inside its vacuum tank. The open-loop performances achieved are below 0.3 arcesc even when the satellite wobble is simulated by the hexapod holding the artificial star. On figure 12 one can see the sensitivity of the measurement of the pupil position and on Figure 13 one can see the close loop operations of this system. Pupil position control with the payload in the loopPupil tracking is working using differential photometry in the focal plane. If one builds a signal using the top vs. bottom half-moons flux and the left vs. right flux one have a signal proportional to the pupil position. On figure 12 one can see the sensitivity of the measurement of the pupil position and on Figure 13 one can see the close loop operations of this system. VIICONCLUSIONWe have assembled and tested a complex opto-electro-mechanical setup capable of calibrating and validating the performances of the CHEOPS payload. The calibration system is now complete; the performances are in line with our expectations and with the performance budget. The system is now be relocated to the CHEOPS payload integration facilities and will serve to fully calibrate it in the course of 2017. To our knowledge it is the first time the end-to-end verification of the photometric performance of a photometric transit satellite is attempted. REFERENCESBenz W.,
“the Cheops team, CHEOPS: scientific objectives, mission concept and challenges for the scientific community”,”
in the 4S Symposium,
(2014). Google Scholar
T. Beck, L. Gambicorti, Ch. Broeg, A. Fortier, D. Piazza, V. Cessa, D. Ehrenreich, D. Magrin, J-Y Plesseria, G. Peter, I. Pagano, M. Steller, Z. Kovacs, R. Ragazzoni, F. Wildi, W. Benz,
“The CHEOPS (CHaracterizing ExOPlanets Satellite) mission: telescope optical design, development status and main technical and programmatic challenges,”
in International Conference on Space Optics,
(2016). Google Scholar
A. Deline, F. Wildi, M. Sordet, B. Chazelas,
“The testing and characterization of the CHEOPS CCDs,”
in International Conference on Space Optics,
(2016). Google Scholar
V. Cessa, T. Beck, W. Benz, C. Broeg, D. Ehrenreich, A. Fortier, G. Peter, D. Magrin, I. Pagano, J.-Y. Plesseria, M. Steller, J. Szoke, N. Thomas, R. Ragazzoni, F. Wildi & the CHEOPS Team,
“CHEOPS: A space telescope for ultra-hight precision photometry of exoplanet transits,”
in International Conference on Space Optics,
(2014). Google Scholar
F. Wildi, B. Chazelas, A. Deline, M. Sordet, M. Sarajlic,
“The CHEOPS’ instrument On-Ground calibration system.,”
Techniques and Instrumentation for Detection of Exoplanets VII, 9605
–45
(2015). Google Scholar
F. Wildi, B. Chazelas, A Deline,
“A white super stable source for the metrology of astronomical photometers,”
SPIE, 9605
–63 San Diego2015). Google Scholar
T. Beck,
“CHEOPS: status summary of the instrument development,”
SPIE, 9904
–75 Google Scholar
N. Rando,
“ESA CHEOPS mission: development status, SPIE 9904-74,”
SPIE, 9904
–75 Google Scholar
|