Presentation + Paper
10 July 2018 SHARK-NIR: the coronagraphic camera for LBT in the AIV phase at INAF-Padova
Jacopo Farinato, Guido Agapito, Francesca Bacciotti, Carlo Baffa, Andrea Baruffolo, Maria Bergomi, Andrea Bianco, Angela Bongiorno, Luca Carbonaro, Elena Carolo, Alexis Carlotti, Simonetta Chinellato, Laird Close, Marco De Pascale, Marco Dima, Valentina D'Orazi, Simone Esposito, Daniela Fantinel, Giancarlo Farisato, Wolfgang Gaessler, Emanuele Giallongo, Davide Greggio, Olivier Guyon, Philip Hinz, Luigi Lessio, Demetrio Magrin, Luca Marafatto, Dino Mesa, Lars Mohr, Manny Montoya, Fernando Pedichini, Enrico Pinna, Alfio Puglisi, Roberto Ragazzoni, Bernardo Salasnich, Marco Stangalini, Daniele Vassallo, Christophe Vérinaud, Valentina Viotto, Alessio Zanutta
Author Affiliations +
Abstract
Exo-Planets search and characterization has been the science case driving the SHARK-NIR design, which is one of the two coronagraphic instruments proposed for the Large Binocular Telescope. In fact, together with SHARK-VIS (working in the visible domain), it will offer the possibility to do binocular observations combining direct imaging, coronagraphic imaging and coronagraphic low resolution spectroscopy in a wide wavelength domain, going from 0.5μm to 1.7μm. Additionally, the contemporary usage of LMIRCam, the coronagraphic LBTI NIR camera, working from K to L band, will extend even more the covered wavelength range. The instrument has been designed with two intermediate pupil planes and three focal planes, in order to give the possibility to implement a certain number of coronagraphic techniques, with the purpose to select a few of them matching as much as possible the requirements of the different science cases in terms of contrast at various distances from the star and in term of required field of view. SHARK-NIR has been approved by the LBT board in June 2017, and the procurement phase started just after. We report here about the project status, which is currently at the beginning of the AIV phase at INAF-Padova, and should last about one year. Even if exo-planets is the main science case, the SOUL upgrade of the LBT AO will increase the instrument performance in the faint end regime, allowing to do galactic (jets and disks) and extra-galactic (AGN and QSO) science on a relatively wide sample of targets, normally not reachable in other similar facilities.
Conference Presentation
© (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Jacopo Farinato, Guido Agapito, Francesca Bacciotti, Carlo Baffa, Andrea Baruffolo, Maria Bergomi, Andrea Bianco, Angela Bongiorno, Luca Carbonaro, Elena Carolo, Alexis Carlotti, Simonetta Chinellato, Laird Close, Marco De Pascale, Marco Dima, Valentina D'Orazi, Simone Esposito, Daniela Fantinel, Giancarlo Farisato, Wolfgang Gaessler, Emanuele Giallongo, Davide Greggio, Olivier Guyon, Philip Hinz, Luigi Lessio, Demetrio Magrin, Luca Marafatto, Dino Mesa, Lars Mohr, Manny Montoya, Fernando Pedichini, Enrico Pinna, Alfio Puglisi, Roberto Ragazzoni, Bernardo Salasnich, Marco Stangalini, Daniele Vassallo, Christophe Vérinaud, Valentina Viotto, and Alessio Zanutta "SHARK-NIR: the coronagraphic camera for LBT in the AIV phase at INAF-Padova", Proc. SPIE 10703, Adaptive Optics Systems VI, 107030E (10 July 2018); https://doi.org/10.1117/12.2313659
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Coronagraphy

Cameras

Adaptive optics

Stars

Sensors

Planets

Imaging systems

RELATED CONTENT


Back to Top