In this study we propose to use thermal camera images to (1) improve cloud detection and (2) to study visibility conditions during nighttime. For this purpose, we leverage FLIR A320 and FLIR A655sc Stationary Thermal Imagers installed in the city of Bern, Switzerland. We find that the proposed data provides detailed information about low clouds and the cloud base height that is usually not seen by satellites. However, clouds with a small optical depth such as thin cirrus clouds are difficult to detect as the noise level of the captured thermal images is high. The second part of this study focuses on the detection of structural features. Predefined targets such as roof windows, an antenna, or a small church tower are selected at distances of 140m to 1210m from the camera. We distinguish between active targets (heated targets or targets with insufficient thermal insulation) and passive structural features to analyze the sensor's visibility range. We have found that a successful detection of some passive structural features highly depends on incident solar radiation. Therefore, the detection of such features is often hindered during the night. On the other hand, active targets can be detected without difficulty during the night due to major differences in temperature between the heated target and its surrounding non-heated objects. We retrieve response values by the cross-correlation of master edge signatures of the targets and the actual edge-detected thermal camera image. These response values are a precise indicator of the atmospheric conditions and allows us to detect restricted visibility conditions. |
ACCESS THE FULL ARTICLE
No SPIE Account? Create one
CITATIONS
Cited by 1 scholarly publication.
Clouds
Target detection
Visibility
Cameras
Edge detection
Thermography
Visibility through fog