Optical fibres have revolutionised clinical practice in the form of the optical endoscope, and are now providing the framework for an entirely new endoscopic paradigm: all-optical ultrasound. Ultrasonic techniques, and in particular those based on the opto-acoustic effect of Brillouin scattering, present a number of advantages compared to purely optical techniques. High contrast imaging can be achieved without the use of fluorescent labels, elastic properties of the specimen can be quantified, lateral resolution is provided by optics, and axial resolution is provided by sub-optical wavelength non-destructive phonons. Here we present an optical fibre-based time resolved Brillouin scattering system, called a phonon probe, which is capable of measuring nanometric topography and elastic properties in parallel from microscopic samples. We also demonstrate that our technique is inherently compatible with standard coherent imaging bundles, which will drive the technology towards future in vivo applications.
|