Presentation + Paper
15 March 2023 Vibration localization in elastic hyperbolic lattices
Author Affiliations +
Abstract
The hyperbolic plane affords a rich design space, which can be leveraged to create elastic lattices characterized by boundary-dominated vibrational spectra. Such elastic hyperbolic lattices are made by projecting nodes of a regular tessellation of curved hyperbolic space onto a flat space to define lattice sites which are then connected by simple linkages. Dynamically, these systems are useful for the protection of bulk material from boundary-incident perturbations. The lattice achieves this by guiding waves around its dense boundary rather than towards its sparsely populated bulk, accessing modes from its boundary-dominated spectrum to steer vibrations along its perimeter. We confirm the boundary-dominated spectrum and edge-confined wave propagation via numerical simulation and experimental validation. This elastic hyperbolic lattice introduces an experimentally-feasible approach to generating mechanical systems with boundary-dominated states, reminiscent of recent topologically protected edge-states in quantum systems.
Conference Presentation
© (2023) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Nicholas H. Patino, Curtis Rasmussen, and Massimo Ruzzene "Vibration localization in elastic hyperbolic lattices", Proc. SPIE 12431, Photonic and Phononic Properties of Engineered Nanostructures XIII, 1243102 (15 March 2023); https://doi.org/10.1117/12.2661153
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Elasticity

Vibration

Mode shapes

Numerical simulations

Reflection

Transducers

Wave propagation

Back to Top