Hemodynamic models connect cerebral blood flow and oxygen metabolism with deoxy-hemoglobin and oxyhemoglobin measured by near-infrared spectroscopy (NIRS) to analyze cerebral hemodynamics. These models elucidate the relationship between physiological processes and NIRS signals, capturing changes in cerebral blood volume, flow, and oxygen metabolism. In our study, we explore microvasculature compartments and apply these models to NIRS data during pig cardiac arrest and cardiopulmonary resuscitation. Our goals were to validate the model and to understand the behavior of cerebral microvasculature and metabolism during cardiac arrest and resuscitation. By employing the inverse of the hemodynamic model, we measure a range of significant physiological parameters.
|