Presentation + Paper
13 March 2024 Effects of blood type and number concentration on the circulation time of micro-sized erythrocyte-derived optical particles in mice
Author Affiliations +
Abstract
Erythrocyte-derived optical microparticles containing near infrared (NIR) dyes such as indocyanine green (ICG) present a promising platform for fluorescence imaging and laser treatment of abnormal vasculature, including port wine birthmarks. Herein, we have investigated the effects of blood type utilized in fabricating these microparticles, and the number density of the particles on their circulation time in mice by real-time NIR fluorescence imaging of the dermal vasculature. We find that the emission half-life of microparticles engineered from human O+ blood type increases by approximately two-fold as compared to those engineered from B+ blood type. Increasing the number density of the microparticles fabricated from O+ blood type from ~0.5 millions/μl to 1.6 millions/μl is associated with nearly a fourfold increase in the emission half-life of the particles. These findings emphasize the importance of blood type and number density in engineering erythrocyte-derived particles for clinical applications as treatment of PWBs.
Conference Presentation
(2024) Published by SPIE. Downloading of the abstract is permitted for personal use only.
G. Swajian, S. Zaman, C.-H. Lee, E. Nguyen, C. Huynh, O. Lai, J. S. Nelson, B. Choi, W. Jia, and B. Anvari "Effects of blood type and number concentration on the circulation time of micro-sized erythrocyte-derived optical particles in mice", Proc. SPIE 12859, Colloidal Nanoparticles for Biomedical Applications XIX, 1285908 (13 March 2024); https://doi.org/10.1117/12.3003013
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Blood

Near infrared

Particles

Fluorescence

Fluorescence imaging

Fluorescence intensity

Indocyanine green

Back to Top