A mathematical model for the production of singlet delta oxygen from the reaction of a gas containing chlorine with the hydroperoxy ion in liquid basic hydrogen peroxide is reviewed. An exact solution for the Cl2 utilization, O2(1(Delta) ) yield, and efficiency of the generator is obtained in the well-stirred limit (WSL) for which the surface concentration of HO2- is constant. A universal set of performance curves is presented and the implications when assessing generator performance are discussed. When depletion of the surface concentration of HO2- is important, perturbation theory is used to obtain a solution for the generator's utilization, yield, and efficiency which is a generalization of the corresponding WSL solution. A criterion for the validity of the perturbation solution is obtained and it is shown that the performance of a rotogenerator plateaus not too far above the value of disk rotation rate predicted by this criterion. Finally an integral method is used to obtain a simple, but approximate, solution of the utilization-yield equations which applies over a wide range of operating conditions.
|