Paper
10 April 1995 Imaging and modeling of pulsed-laser thin-film deposition plumes
Peter K. Schenck, John W. Hastie, Albert J. Paul, David W. Bonnell
Author Affiliations +
Abstract
Optical multichannel emission spectroscopy and intensified charge coupled device (ICCD) imaging have been applied to real-time, in situ gas phase species identification during the pulsed excimer or Nd/YAG laser deposition of selected thin films. A plume gasdynamic expansion model has been developed and used to predict the outer edge plume front locations for comparison with those observed in the ICCD images. Good agreement was found between the model and ICCD images, with plume temperatures indicated by the model to be typically between 10,000 K and 30,000 K. Molecular beam mass spectrometry has also been used for real- time, in situ species identification and velocity distribution determinations. The systems studied include PbZr0.53Ti0.47O3 (PZT), BaTiO3, AlN, BN, Al2O3, and Ag. The ICCD imaging of plumes from PZT and BN targets, in particular, revealed that particulate ejecta were present after some regions of the target surface had been modified morphologically by multiple exposures to the laser beam. These ejecta appeared long after the luminous plume had decayed. When relatively high laser fluences were used, ICCD imaging also revealed strong evidence for interactions between the laser and the near-surface plume. This interaction manifests itself as increased emission intensity in the direction of the incoming laser beam. Mass spectrometric studies showing relatively fast velocity components of both neutral and charged plume species support the imaging evidence. The laser-plume interaction results in higher kinetic energies and a much greater effective temperature for a portion of the plume species. The slower component(s) appeared to be more thermal in origin (i.e. controlled by surface vaporization), and apparently reflects the target surface temperature.
© (1995) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Peter K. Schenck, John W. Hastie, Albert J. Paul, and David W. Bonnell "Imaging and modeling of pulsed-laser thin-film deposition plumes", Proc. SPIE 2403, Laser-Induced Thin Film Processing, (10 April 1995); https://doi.org/10.1117/12.206267
Lens.org Logo
CITATIONS
Cited by 3 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Spectroscopy

Ions

Pulsed laser operation

Ferroelectric materials

Molecular beams

Imaging systems

Silver

Back to Top