Paper
30 December 2004 Radicals and Oxidants Instrument (ROXI) for Mars surface analyses
Albert S. Yen, Soon Sam Kim
Author Affiliations +
Proceedings Volume 5660, Instruments, Science, and Methods for Geospace and Planetary Remote Sensing; (2004) https://doi.org/10.1117/12.578137
Event: Fourth International Asia-Pacific Environmental Remote Sensing Symposium 2004: Remote Sensing of the Atmosphere, Ocean, Environment, and Space, 2004, Honolulu, Hawai'i, United States
Abstract
Electron Paramagnetic Resonance (EPR) spectroscopy is likely the most sensitive technique for detection of elements and compounds with unpaired electrons. Typical analyses in the laboratory utilize a fixed microwave frequency and a scanning magnetic field to induce electron spin-state transitions in the sample. The location of the resonant absorption in the scan is a diagnostic property of the material, and the intensity of the signal is proportional to the concentration. We have developed a frequency scan EPR for planetary surface applications where a fixed magnetic field and tunable microwave sources are used to produce these characteristic resonant peaks. Our narrowband spectrometer covers 7.5 to 8.5 GHz at a field strength 2.8 kGauss and is specifically designed for the identification of organic radicals, minerals with radiation-induced defects, and reactive compounds in martian surface samples. Our wideband spectrometer covers 2.0 to 8.0 GHz at a field strength of 1.0 kGauss and is useful for the detection of paramagnetic cations. The detection limit of the narrowband and wideband spectrometers for species with unpaired electrons is 50 PPB and 1 PPM, respectively.
© (2004) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Albert S. Yen and Soon Sam Kim "Radicals and Oxidants Instrument (ROXI) for Mars surface analyses", Proc. SPIE 5660, Instruments, Science, and Methods for Geospace and Planetary Remote Sensing, (30 December 2004); https://doi.org/10.1117/12.578137
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Spectroscopy

Mars

Microwave radiation

Minerals

Natural surfaces

Magnetism

Chemical elements

RELATED CONTENT


Back to Top