Paper
26 November 2007 Probabilistic teleportation of two-unknown entangled atomic states without Bell-State measurement
Xiao-Yan Zhou, Jian-Xing Fang, Hui-Ying Ni
Author Affiliations +
Abstract
In this paper, we propose a protocol for teleportation of two unknown atomic states using non-maximally entangled states. We consider teleportation for atomic entangled states in cavity quantum electrodynamics (QED). Through analysis, we conclude that it could be succeed without joint BSM (Bell-State measurement). One BSM can be exactly converted into two separate atomic measurements on the two relevant atoms only by one step using the interaction between the atoms and atoms in the cavity. The most remarkable advantage of our scheme is that the teleportation and distillation procedure can be carried out concurrently. Suppose that the cavity mode is prepared in vacuum state. We can utilize the Hamiltonian for the system, discussing how to make teleportation successful. And we discuss the probability of reconstructing the initial state. We consider two identical two-level atoms simultaneously interacting with a single-mode cavity field. There is no energy exchange between the atomic system and the cavity, so we use the detuned interaction between atoms and atoms in cavity in the scheme which is insensitive to both the cavity decay and the thermal field. For the resonant cavity, in order to realize the teleportation successfully, the relationship between the teleportation time and the excited atom lifetime should take into consideration. The time required to complete the teleportation should much shorter than that of atom radiation. Hence, atom with a sufficiently long excited lifetime should be chosen. The discussion of the scheme indicates that it can be realized by current technologies.
© (2007) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Xiao-Yan Zhou, Jian-Xing Fang, and Hui-Ying Ni "Probabilistic teleportation of two-unknown entangled atomic states without Bell-State measurement", Proc. SPIE 6827, Quantum Optics, Optical Data Storage, and Advanced Microlithography, 68270M (26 November 2007); https://doi.org/10.1117/12.756072
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Chemical species

Teleportation

Entangled states

Quantum information

Bismuth

Electroencephalography

Magnetism

Back to Top