Paper
12 February 2009 Control time reduction using virtual source projection for treating a leg sarcoma with nonlinear perfusion
Kung-Shan Cheng, Yu Yuan, Zhen Li, Paul R. Stauffer, William T. Joines, Mark W. Dewhirst, Shiva K. Das
Author Affiliations +
Abstract
Purpose: Blood perfusion is a well-known factor that complicates accurate control of heating during hyperthermia treatments of cancer. Since blood perfusion varies as a function of time, temperature and location, determination of appropriate power deposition pattern from multiple antenna array Hyperthermia systems and heterogeneous tissues is a difficult control problem. Therefore, we investigate the applicability of a real-time eigenvalue model reduction (virtual source - VS) reduced-order controller for hyperthermic treatments of tissue with nonlinearly varying perfusion. Methods: We impose a piecewise linear approximation to a set of heat pulses, each consisting of a 1-min heat-up, followed by a 2-min cool-down. The controller is designed for feedback from magnetic resonance temperature images (MRTI) obtained after each iteration of heat pulses to adjust the projected optimal setting of antenna phase and magnitude for selective tumor heating. Simulated temperature patterns with additive Gaussian noise with a standard deviation of 1.0°C and zero mean were used as a surrogate for MRTI. Robustness tests were conducted numerically for a patient's right leg placed at the middle of a water bolus surrounded by a 10-antenna applicator driven at 150 MHz. Robustness tests included added discrepancies in perfusion, electrical and thermal properties, and patient model simplifications. Results: The controller improved selective tumor heating after an average of 4-9 iterative adjustments of power and phase, and fulfilled satisfactory therapeutic outcomes with approximately 75% of tumor volumes heated to temperatures >43°C while maintaining about 93% of healthy tissue volume < 41°C. Adequate sarcoma heating was realized by using only 2 to 3 VSs rather than a much larger number of control signals for all 10 antennas, which reduced the convergence time to only 4 to 9% of the original value. Conclusions: Using a piecewise linear approximation to a set of heat pulses in a VS reduced-order controller, the proposed algorithm greatly improves the efficiency of hyperthermic treatment of leg sarcomas while accommodating practical nonlinear variation of tissue properties such as perfusion.
© (2009) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Kung-Shan Cheng, Yu Yuan, Zhen Li, Paul R. Stauffer, William T. Joines, Mark W. Dewhirst, and Shiva K. Das "Control time reduction using virtual source projection for treating a leg sarcoma with nonlinear perfusion", Proc. SPIE 7181, Energy-based Treatment of Tissue and Assessment V, 71810F (12 February 2009); https://doi.org/10.1117/12.808499
Lens.org Logo
CITATIONS
Cited by 4 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Tumors

Tissues

Antennas

Blood

Feedback control

Device simulation

Thermal modeling

Back to Top