Paper
18 February 2009 QD VCSELs with InAs/InGaAs short period superlattice QW injector
Author Affiliations +
Abstract
Structures with tunnel-coupled pairs consisting of InGaAs quantum wells (QWs) grown on top of self-assembled InAs quantum dots (QDs) were used previously as a gain medium for vertical cavity surface emitting lasers (VCSELs) to eliminate problems with QD-limited maximum saturated gain. Conventional molecular beam epitaxy of tunnel-coupled QDs with slow InAs growth rate and InGaAs solid solution QW injector with high InAs growth rate required a long delay in growth process for changing indium source temperature/flux. This leads to non-intentional doping of tunnel barrier and reproducibility issues. To overcome these problems, structures of tunnel-coupled QDs-QW pairs consisting of InAs/InGaAs short period superlattice (SPSL) QW injector with compatible slow InAs growth rate (QDs-SPSL) were developed and compared with traditional InAs-InGaAs (QDs-InGaAs). Photoluminescence (PL) and electroluminescence were used to study the properties of the "well-on-dots" active medium with InAs/InGaAs SPSL QW and with InGaAs QW. The optimized tunnel triple pair QDs-SPSL structure with 2x reduction of growth time has demonstrated a 2x enhanced PL efficiency as compared with traditional QDs-InGaAs structures. A novel tunnel-coupled triple QDs InAs-SPSL was successfully employed as a gain medium of VCSELs with doped all-epitaxial distributed Bragg reflectors (DBRs). Room temperature CW lasing wavelengths in the range from 1100 nm to 1150 nm were measured in VCSELs with attuned DBRs. These QDs-SPSL VCSELs demonstrated minimum threshold current value Ith = 0.85 mA and maximum differential efficiency of 0.16 W/A.
© (2009) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
V. Tokranov, M. Yakimov, and S. Oktyabrsky "QD VCSELs with InAs/InGaAs short period superlattice QW injector", Proc. SPIE 7224, Quantum Dots, Particles, and Nanoclusters VI, 72240T (18 February 2009); https://doi.org/10.1117/12.809570
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Quantum wells

Vertical cavity surface emitting lasers

Solids

Indium gallium arsenide

Indium arsenide

Superlattices

Oxides

RELATED CONTENT


Back to Top