Paper
12 February 2010 Ultra high power, ultra low RIN up to 20 GHz 1.55 μm DFB AlGaInAsP laser for analog applications
J.-R. Burie, G. Beuchet, M. Mimoun, P. Pagnod-Rossiaux, B. Ligat, J. C. Bertreux, J.-M. Rousselet, J. Dufour, P. Rougeolle, F. Laruelle
Author Affiliations +
Proceedings Volume 7616, Novel In-Plane Semiconductor Lasers IX; 76160Y (2010) https://doi.org/10.1117/12.840917
Event: SPIE OPTO, 2010, San Francisco, California, United States
Abstract
Low levels of intensity noise in semiconductor lasers is a key feature for numerous applications such as high resolution spectroscopy, fiber-optic sensors, signal distribution in broadband analog communications as CATV, and more generally for microwave photonics systems. In particular, a DFB laser with very low relative intensity noise (RIN) levels from 0.1 to 20 GHz is a key component as it correspond to the whole frequency bandwidth of interest for radars. Several approaches have been reported but most suffer from the compromise between RIN level and power out level and stability, with RIN level in the range -150 dB.Hz-1 to -155 dB.Hz-1 in this frequency range [1,2]. We report here results from a new AlGaInAs DFB laser developed at 3S PHOTONICS. Excellent device performance is observed across an operating range from the laser threshold up to the thermal roll-over. Pure longitudinal single mode at 1545 nm is obtained over the whole current operating range with side mode suppression ratio higher than 50dB. The maximum output power reaches up to 130 mW. In these conditions, RIN levels below -160 dB.Hz-1 is obtained in up to 20 GHz. These are the best results to our knowledge combining such high single mode output power with such low RIN level in the frequency range 0.4-20 GHz.
© (2010) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
J.-R. Burie, G. Beuchet, M. Mimoun, P. Pagnod-Rossiaux, B. Ligat, J. C. Bertreux, J.-M. Rousselet, J. Dufour, P. Rougeolle, and F. Laruelle "Ultra high power, ultra low RIN up to 20 GHz 1.55 μm DFB AlGaInAsP laser for analog applications", Proc. SPIE 7616, Novel In-Plane Semiconductor Lasers IX, 76160Y (12 February 2010); https://doi.org/10.1117/12.840917
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Analog electronics

Laser development

Semiconductor lasers

Radar

High power lasers

Laser applications

Telecommunications

Back to Top