Paper
25 March 2013 Improving photovoltaic devices using silver nanocubes
Author Affiliations +
Abstract
We present a design of implementing plasmonic nanoparticles made from silver onto the surface of amorphous silicon based solar cells. When adding these silver nanoparticles we expect to see enhancements to the solar cells due to the plasmonic effects induced by the metal nanoparticles. The nanoparticles are used as subwavelength scattering elements to couple and trap light within the cell. In addition, the excited surface plasmon-polaritons promote a strong localized field enhancement which increases the cells ability to absorb light. Our choice of geometry of the nanoparticle is cubic rather than the traditional spherical geometry. We expect to see the cell perform better with the cubic shape due to the larger surface area it spans. We investigate the effects of these particles on to the performance of the solar cells, as well as introduce an intrinsic layer between the active p and n region creating a p-i-n solar cell configuration. We report the use of an FDTD simulator to characterize the optical performance of the solar cell. Both cubical and spherical nanoparticles made from silver were studied. Our simulations predict an overall increase of 67% (from 7.5% to 12.5) based on the p-i-n configuration with inclusion of the plasmonic particles onto the surface of the cells. Experimentally we verified the results by first fabricating a crystalline silicon-based solar cell with a p-n configuration and then placing the silver nanocubes onto the surface of the cell. An overall increase of about 28% was experimentally demonstrated (from 3.97% to 5.081%). We anticipate further increases with the p-i-n configuration.
© (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
F. Hejazi, S. Y. Ding, Y. Sun, A. Bottomley, A. Ianoul, and W. N. Ye "Improving photovoltaic devices using silver nanocubes", Proc. SPIE 8620, Physics, Simulation, and Photonic Engineering of Photovoltaic Devices II, 862004 (25 March 2013); https://doi.org/10.1117/12.2002024
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Solar cells

Nanoparticles

Silver

Plasmonics

Particles

Spherical lenses

Silicon

Back to Top