Presentation + Paper
28 August 2015 Ultraviolet avalanche photodiodes
Ryan McClintock, Manijeh Razeghi
Author Affiliations +
Abstract
The III-Nitride material system is rapidly maturing; having proved itself as a material for LEDs and laser, and now finding use in the area of UV photodetectors. However, many UV applications are still dominated by the use of photomultiplier tubes (PMT). PMTs are capable of obtaining very high sensitivity using internal electron multiplication gain (typically ~106). It is highly desirable to develop a compact semiconductor-based photodetector capable of realizing this level of sensitivity. In principle, this can be obtained in III-Nitrides by taking advantage of avalanche multiplication under high electric fields – typically 2.7 MV/cm, which with proper design can correspond to an external reverse bias of less than 100 volts.

In this talk, we review the current state-of-the-art in III-Nitride solar- and visible-blind APDs, and present our latest results on GaN APDs grown on both conventional sapphire and low dislocation density free-standing c- and m-plane GaN substrates. Leakage current, gain, and single photon detection efficiency (SPDE) of these APDs were compared. The spectral response and Geiger-mode photon counting performance of UV APDs are studied under low photon fluxes, with single photon detection capabilities as much as 30% being demonstrated in smaller devices. Geiger-mode operation conditions are optimized for enhanced SPDE.
Conference Presentation
© (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Ryan McClintock and Manijeh Razeghi "Ultraviolet avalanche photodiodes", Proc. SPIE 9555, Optical Sensing, Imaging, and Photon Counting: Nanostructured Devices and Applications, 95550B (28 August 2015); https://doi.org/10.1117/12.2195387
Lens.org Logo
CITATIONS
Cited by 3 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Avalanche photodetectors

Gallium nitride

Ultraviolet radiation

Avalanche photodiodes

Absorption

Single photon

Photodetectors

Back to Top