A new method is proposed for caliber measurement of the ascending aorta (AA) and descending aorta (DA). A key component of the method is the automatic detection of the carina, as an anatomical landmark around which an axial volume of interest (VOI) can be defined to observe the aortic caliber. For each slice in the VOI, a linear profile line connecting the AA with the DA is found by pattern matching on the underlying intensity profile. Next, the aortic center position is found using Hough transform on the best linear segment candidate. Finally, region growing around the center provides an accurate segmentation and caliber measurement. We evaluated the algorithm on 113 sequential chest CT scans, slice thickness of 0.75 - 3.75mm, 90 with contrast agent injected. The algorithm success rates were computed as the percentage of scans in which the center of the AA was found. Automated measurements of AA caliber were compared with independent measurements of two experienced chest radiologists, comparing the absolute difference between the two radiologists with the absolute difference between the algorithm and each of the radiologists. The measurement stability was demonstrated by computing the STD of the absolute difference between the radiologists, and between the algorithm and the radiologists. Results: Success rates of 93% and 74% were achieved, for contrast injected cases and non-contrast cases, respectively. These results indicate that the algorithm can be robust in large variability of image quality, such as the cases in a realworld clinical setting. The average absolute difference between the algorithm and the radiologists was 1.85mm, lower than the average absolute difference between the radiologists, which was 2.1mm. The STD of the absolute difference between the algorithm and the radiologists was 1.5mm vs 1.6mm between the two radiologists. These results demonstrate the clinical relevance of the algorithm measurements.
|