Paper
24 March 2016 Colonoscopic polyp detection using convolutional neural networks
Sun Young Park, Dusty Sargent
Author Affiliations +
Abstract
Computer aided diagnosis (CAD) systems for medical image analysis rely on accurate and efficient feature extraction methods. Regardless of which type of classifier is used, the results will be limited if the input features are not diagnostically relevant and do not properly discriminate between the different classes of images. Thus, a large amount of research has been dedicated to creating feature sets that capture the salient features that physicians are able to observe in the images. Successful feature extraction reduces the semantic gap between the physician’s interpretation and the computer representation of images, and helps to reduce the variability in diagnosis between physicians. Due to the complexity of many medical image classification tasks, feature extraction for each problem often requires domainspecific knowledge and a carefully constructed feature set for the specific type of images being classified. In this paper, we describe a method for automatic diagnostic feature extraction from colonoscopy images that may have general application and require a lower level of domain-specific knowledge. The work in this paper expands on our previous CAD algorithm for detecting polyps in colonoscopy video. In that work, we applied an eigenimage model to extract features representing polyps, normal tissue, diverticula, etc. from colonoscopy videos taken from various viewing angles and imaging conditions. Classification was performed using a conditional random field (CRF) model that accounted for the spatial and temporal adjacency relationships present in colonoscopy video. In this paper, we replace the eigenimage feature descriptor with features extracted from a convolutional neural network (CNN) trained to recognize the same image types in colonoscopy video. The CNN-derived features show greater invariance to viewing angles and image quality factors when compared to the eigenimage model. The CNN features are used as input to the CRF classifier as before. We report testing results for the new algorithm using both human and mouse colonoscopy data.
© (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Sun Young Park and Dusty Sargent "Colonoscopic polyp detection using convolutional neural networks", Proc. SPIE 9785, Medical Imaging 2016: Computer-Aided Diagnosis, 978528 (24 March 2016); https://doi.org/10.1117/12.2217148
Lens.org Logo
CITATIONS
Cited by 38 scholarly publications and 1 patent.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Feature extraction

Video

Diagnostics

Computer aided diagnosis and therapy

Tissues

Convolutional neural networks

Medical imaging

Back to Top