In this presentation, we propose an effective scattering-potential approach for treating interface-roughness scattering of moving electrons in a superlattice structure. Based on obtained effective scattering potentials, we further derive a generalized Boltzmann transport equation by including a self-consistent internal scattering force. In addition, we solve this equation exactly beyond the relaxation-time approximation, and meanwhile, analyze the dependence of conduction current on interface-roughness parameters at various temperatures and DC electric fiield strengths. Finally, we reveal a microscopic mechanism associated with non-ohmic transport behavior by analyzing features in steady-state non-equilibrium electron occupation function and its dependence on interface roughness parameters.
|