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Preface

The field of optics can generally be divided into four subfields or disciplines,
namely, geometrical, wave, statistical, and quantum optics. Geometrical or
ray optics is by far the oldest and most mature subfield, having been studied
since the time of Fermat and Newton. Geometrical optics models light as a
ray and is accurate in the asymptotic limit as the wavelength goes to zero. As a
result, geometrical optics does not accurately predict phenomena such as
diffraction (although it can be extended to include such phenomena via the
geometrical theory of diffraction and the uniform theory of diffraction). Wave
optics—developed by giants like Fresnel, Young, Maxwell, Rayleigh, and
Sommerfeld—includes diffraction, interference, and all other wave phenom-
ena and is the second most mature discipline. The most popular application of
wave optics theory is Fourier optics, so much so that the two are now
synonymous. Both geometrical and wave optics are extensively used in optical
design and have been the subject of numerous theoretical and computational
textbooks.

Statistical optics, as it is commonly defined, extends both geometrical and
wave optics to include random optical sources, propagation through or
scattering from random media, and detector noise. Major contributors to the
discipline include Wolf, Goodman, Tatarskii, and Ishimaru. Indeed, Wolf
(co-authored with Mandel) and Goodman, respectively, are the authors of
what are universally considered the definitive texts on the subject: Optical
Coherence and Quantum Optics and Statistical Optics, now in its second
edition. These books present the theoretical foundations of statistical optics
and classical optical coherence in excellent physical detail.

Quantum optics arose as a discipline around the time of the first lasers in
the 1960s. It includes all aspects of geometrical, wave, and statistical optics
and accurately predicts the interaction of individual photons with atoms, the
inner workings of lasers, squeezed light states, photoelectric detection, etc.
Significant contributors to quantum optics include some of the most brilliant
minds in physics—Einstein, Schrodinger, Bohr, Heisenberg, Born, and
Mandel. Applications that employ statistical and quantum optics theory are
legion: in the case of the former, adaptive optics, optical communications,
optical tweezing, directed energy, and remote sensing, and in the latter, lasers,

xii
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quantum communications, and quantum computing. This list is by no means
all-inclusive.

While some of the technologies and applications listed above are well
established, many are still in development, and consequently, active areas of
research. Statistical optics is a little more mature in this regard. In recent
years, statistical optics and classical optical coherence theory have been
applied to engineer and synthesize random fields for use in specific
applications, many of which are mentioned above. Indeed, techniques to
physically generate optical fields with prescribed correlation or coherence
properties can be found throughout the published literature. Two recent
papers in Progress in Optics entitled “Generation of partially coherent beams”
(Prog. Opt. 2017, 62, 157-223) and “Applications of optical coherence
theory” (Prog. Opt. 2020, 65, 43—-104) provide excellent summaries of these
topics. As novel technologies and applications increasingly exploit optical
coherence, accurate simulation of stochastic optical fields becomes critically
important. Recent books on statistical optics have started to include sections
on simulating random optical fields. Nevertheless, unlike geometrical and
wave optics, currently there is no text (to my knowledge) devoted to this topic.

This book aims to be the first by presenting current approaches for
simulating random optical fields with prescribed statistical properties. In
particular, this text demonstrates how to generate optical fields, which are
sample functions drawn from a random process described by a correlation
function. These random fields can then be used in simulations of optical
systems, propagation through random or complex media, scattering from
surfaces, etc., which are described in other computational optics texts, like
Computational Fourier Optics (SPIE Press, 2011), Optics Using MATLAB®
(SPIE Press, 2017), Numerical Simulation of Optical Wave Propagation (SPIE
Press, 2010), Computational Methods for Electromagnetic and Optical Systems
(CRC Press, 2011), and Computational Photonics (Wiley, 2010).

The secondary purpose of this book is as a teaching tool, augmenting the
theoretical concepts presented in Wolf’s and Goodman’s classic texts.
Traditionally, students of optics begin with geometrical and wave optics,
which are taught assuming deterministic optical fields. The transition to the
concept of a random optical field can be difficult to grasp, especially when
the mathematics requires understanding and applying random process theory.
On the other hand, by generating realizations of the random optical field, the
statistical optics problem simplifies to a deterministic geometrical or wave
optics problem with which students are more familiar. In the context of
statistical optics, this simulation is a single random experiment, and statistical
moments are computed from the outcomes of many such independent
experiments. It has been my experience that this Monte Carlo approach to
statistical optics provides a significant amount of insight into the underlying
physical phenomena, which greatly exceeds that from theory alone.
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This book is intended for senior undergraduate- and graduate-level students
studying optical physics and engineering as well as researchers or engineers
working in optics. The topics covered in this text require a working knowledge
of differential and integral calculus, probability and statistics, random
processes, linear systems, and MATLAB® programming. It is impossible to
include all the background information on a topic as broad as statistical optics
and keep the text at a manageable length. Therefore, this book includes
extensive reference lists where many of these details can be found.

This textbook is organized into six chapters and three appendices.
Chapter 1 briefly reviews scalar diffraction theory—including the plane wave
spectrum, Rayleigh—Sommerfeld, Fresnel, and Fraunhofer diffraction—before
discussing the foundational principles of scalar statistical optics. We begin with
the first-order or single-point statistics of polarized thermal and pseudo-thermal
light, presenting the probability density functions (PDFs) and statistical
moments of the instantaneous field and irradiance. We then proceed to
second-order (two-point) statistics of the optical field and review key concepts
such as the mutual coherence function, cross-spectral density (CSD) function,
the coherent-modes representation of the CSD function, the superposition rule,
and the van Cittert—Zernike theorem. We close the chapter with a review of
second-order irradiance statistics of thermal light sources, including the
covariance of irradiance, integrated irradiance, and intensity interferometry
also known as the Hanbury Brown and Twiss effect.

In Chapter 2, we present several methods for generating random scalar
fields given a CSD function. These simulation techniques include coherent
modes, pseudo-modes, and the superposition rule. Step-by-step instructions
are provided for implementing each of these techniques, and we generate
multiple random sources using these algorithms. All of the MATLAB scripts
are explained in detail prior to analyzing the results, and the source code is
provided in Appendix C and electronically as part of this book (see
supplemental material %).

Chapter 3 generalizes the theory presented in Chapter 1 to vector or
electromagnetic random fields. In this chapter, we begin by reviewing vector
diffraction theory, the polarization ellipse, Jones vectors, Stokes parameters,
and the Poincaré sphere. We then proceed to the first-order statistics of
partially polarized thermal light and discuss such concepts as the coherency
matrix, the degree of polarization, the polarization state of random fields, and
the PDFs of the Stokes parameters. This is followed, quite naturally, by a
review of the second-order moments of the optical field. The topics presented
here are the beam coherence-polarization matrix (BCPM), the CSD matrix
(CSDM), the electromagnetic coherent-modes representation, bimodal
expansions of the CSDM, and the electromagnetic superposition rule. Lastly,
we conclude the chapter with a brief summary of second-order irradiance
statistics of partially polarized thermal light sources.
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Chapter 4 discusses several methods for generating random electromag-
netic fields, including bimodal expansions, vector pseudo-modes, and the
electromagnetic superposition rule. Like in Chapter 2, step-by-step instruc-
tions are provided for implementing each of these techniques, and we generate
example electromagnetic random sources using these algorithms. All of the
MATLAB scripts are explained in detail.

In Chapter 5, we apply the concepts and algorithms from the prior chapters
to analyze and simulate classical statistical optics experiments and instruments, as
well as applications that utilize random light. Included in this chapter are detailed
simulations of the double-slit or Young’s experiment, a Michelson interferometer,
beam and polarization control with stochastic fields, the Hanbury Brown and
Twiss experiment, and imaging with partially coherent light.

Chapter 6 describes how to simulate nonstationary or pulsed random
fields. Nonstationary partially coherent sources, especially those with space-
time or spatiotemporal coupling, have recently gained interest for potential
use in optical trapping, optical tweezing, and atomic optics. They are
currently at the forefront of beam-control research. What makes simulating
nonstationary random fields especially interesting is the ability to observe the
time evolution of the source. This can provide significant insight into how
random fields behave. We begin this chapter with a summary of the germane
theory—including reviews of the BCPM, coherent modes and bimodal
expansions of the BCPM, pseudo-modes, and the superposition rule—before
generating three example thermal, nonstationary sources. As part of these
simulations, we create movies showing the temporal evolution of these
random fields, which are included with the MATLAB code that accompanies
this book. We discuss the fields’ physical behaviors in the text.

Lastly, besides the MATLAB source code in Appendix C, the appendices
cover two topics that are generally useful when simulating optical propaga-
tion, be it deterministic or random. The first, in Appendix A, explains how to
simulate wave propagation through optical systems (described by a ray-
tracing ABCD matrix) by evaluating the Collins formula, also known as the
generalized Huygens—Fresnel integral, using fast Fourier transforms. In the
appendix, we derive the sampling constraints for two forms (specifically, the
Fourier transform and convolution form) of the Collins formula and present
an example where we simulate wave propagation through an astigmatic
optical system. In Appendix B, we describe how to simulate fields with high
spatial frequency content (spatially broadband fields) via Fresnel spatial
filtering. Fields of this type include point sources (deterministic) and spatially
incoherent fields (stochastic). We first present the theory underpinning Fresnel
spatial filtering and then apply the technique to simulate propagation of a
spatially incoherent source.

It has become somewhat of a cliché but is nonetheless true: No one writes
a book alone. There are many people that deserve my thanks for making it
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possible. First, I would like to acknowledge my Master’s research advisor
Prof. Michael Havrilla. His insistence on linking the mathematics to physical
understanding has motivated all of my work in electromagnetics and optics.
Second, I would like to thank my doctoral advisor Dr. Jason Schmidt. He is
the most knowledgeable person in numerical wave propagation that I know,
and his lessons on the subject heavily influenced this work. These two
individuals are the most responsible for giving me the knowledge to write this
book, and I am eternally grateful.

Other people that played major roles in this effort are Dr. Santasri Bose-
Pillai, Dr. Jack McCrae, and Prof. Steven Fiorino at the Center for Directed
Energy of the Air Force Institute of Technology (AFIT) and Dr. Mark
Spencer at the Directed Energy Directorate of the Air Force Research
Laboratory (AFRL). The latter two have been extremely generous providing
financial support for my research. They made many of the simulation topics
covered in this book possible. I would also like to thank Prof. David Voelz at
New Mexico State University and Prof. Olga Korotkova at the University of
Miami for many fruitful research collaborations. I look forward to many
more in the future.

Last and certainly not least, I am incredibly grateful for my family—
Cristina, Elissa, and Anna. Your patience and understanding while I spent
seven days a week for nine months writing this book have been incredible.

Milo Hyde
3 May 2022
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