Extreme Ultraviolet Lithography

Extreme Ultraviolet Lithography

Harry J. Levinson

SPIE PRESS Bellingham, Washington USA Library of Congress Control Number: 2020944342

Published by

SPIE P.O. Box 10 Bellingham, Washington 98227-0010 USA Phone: +1 360.676.3290 Fax: +1 360.647.1445 Email: books@spie.org Web: http://spie.org

Copyright © 2020 Society of Photo-Optical Instrumentation Engineers (SPIE)

All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means without written permission of the publisher.

The content of this book reflects the work and thought of the author. Every effort has been made to publish reliable and accurate information herein, but the publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Printed in the United States of America. First Printing. For updates to this book, visit http://spie.org and type "PM326" in the search field. Cover foreground image by MS Mikal, courtesy of Shutterstock.

Table of Contents

Pr	eface	ix
1	Introduction1.1Historical Background1.2Components of Lithographic Technology1.3Material Considerations and Multilayer Reflectors1.4General IssuesProblemsReferences	1 3 4 12 13 13
2	Sources of EUV Light	17
	 2.1 Laser-Produced Plasma Light Sources 2.2 Discharge-Produced Plasma Sources 2.2.1 Z-pinch light sources 2.2.2 Electrode-based DPP sources 2.3 Free-Electron Lasers Problems References 	17 32 33 34 36 40 41
3		41
3	EUV Exposure Systems3.1Lithography in Vacuum3.2Illumination Systems3.3Projection Optics3.4Alignment Systems3.5Stages in EUV Lithography Systems3.6Focus SystemsProblemsReferences	45 50 54 60 61 61 63 63
4	EUV Masks	71
	 4.1 Structure of EUV Masks 4.2 Multilayer and Mask Substrate Defects 4.3 Mask Flatness and Roughness 4.4 EUV Mask Fabrication 4.5 EUV Pellicles 	71 77 83 86 87

	4.6	Reticle Pods for EUV Masks	97
	4.7	Alternative EUV Absorbers and Mask Architectures	98
	Prob		102
	Refe	rences	102
5	EUV	Resists	111
	5.1	Exposure Mechanisms of Chemically Amplified EUV Resists	111
	5.2	Stochastic Effects in EUV Lithography	115
	5.3	New Concepts for Chemically Amplified Resists	126
	5.4	Metal-Oxide EUV Resists	129
	5.5	Scissioning Resists	130
	5.6	Vacuum-Deposited Resists	130
	5.7	Underlayers	131
	Prob		134
	Refe	rences	134
6	Com	putational Lithography for EUV	141
	6.1	Conventional OPC Considerations	142
	6.2	The 3D Aspects of EUV Masks	147
	6.3	Resist Physics	156
	6.4	Imaging Optimization for EUV Lithography	159
	Prob	lems	162
	Refe	rences	162
7	Proc	ess Control for EUV Lithography	169
	7.1	Overlay	170
	7.2	Critical Dimension Control	176
	7.3	Yield	178
	Prob	lems	183
	Refe	rences	183
8	Metr	ology for EUV Lithography	187
	8.1	Mask Blank Defect Inspection	188
	8.2	EUV Mask Qualification Tools	191
	8.3	Tools for Qualifying Fabricated Masks	193
	8.4	Tools for Material Testing	196
	Prob	lems	198
	Refe	rences	198
9	EUV	Lithography Costs	203
	9.1	Wafer Costs	203
		9.1.1 Capital costs	203
		9.1.2 Maintenance costs	208
		9.1.3 Operating costs	209
		9.1.4 Metrology costs	210

	9.1.5 Wafer cost summary	211
9.2	-	212
Pro	oblems	213
Re	ferences	213
10 Ex	tending EUV Lithography	215
10	.1 How Low k ₁ Can Go	215
10	.2 Higher NA	217
10	.3 Shorter EUV Wavelengths	225
10	.4 EUV Multiple Patterning	226
10	.5 The Future of EUV Lithography	227
Problems		228
Re	ferences	228
Index		231

Preface

While writing the chapter on EUV lithography for *Principles of Lithography*, I found myself challenged with covering many key topics while limiting the length of the chapter to something appropriate for a book that surveyed all major aspects of lithography. It seemed that a book fully dedicated to EUV lithography might be useful. Although there are already a number of fine books that survey the various aspects of EUV lithography, these books are generally compilations of chapters written by multiple experts in individual subjects. I thought that it might be useful to have a book where every chapter is written from a single perspective: that of the practicing lithographer in a wafer fab.

To bring EUV lithography to full readiness for high-volume manufacturing, considerable development (and a fair amount of research) was needed in nearly facet of lithographic technology—equipment, resists, masks, metrology, and computational methods. Each of these topics is discussed in this book, with an emphasis on those aspects that are unique to EUV lithography. It is assumed that the reader has familiarity with optical lithography, since many of the concepts relevant to EUV lithography were developed and brought to maturity in the context of lithography at optical wavelengths.

For many years, it has been my privilege and a pleasure to have worked with numerous outstanding and inspiring engineers and scientists on EUV lithography. Many of these people were co-workers at Advanced Micro Devices (AMD), the Advanced Mask Technology Center (AMTC), and GLOBALFOUNDRIES, while I engaged with others through consortia, such as Sematech, the EUV LLC, INVENT, and Imec. I also benefitted from interactions with engineers, managers, and executives from companies who supply equipment or materials for lithography. Much of the material in this book originated with colleagues and co-workers whose names appear in the references. I hope that this book does justice to their work.

Numerous people provided material for this book, many through their publications, while others were kind enough to provide figures specifically for this book. I would like to thank the following people who provided figures and gave permission for their use: Dr. Bruno La Fontaine of ASML (Figs. 1.1 and 1.3); Mr. Kevin Nguyen and Ms. Shannon Austin of SEMI (Fig. 1.7);

Mr. Athanassios Kaliudis and Mr. Florian Heinig of Trumpf GmbH (Fig. 2.4); Dr. Torsten Feigl of optiX fab GmbH (Fig. 2.6); Dr. Hakaru Mizoguchi of Gigaphoton, Inc. (Fig. 2.8); Dr. Igor Fomenkov of ASML (Fig. 2.12); Dr. Anthony Yen of ASML (Figs. 2.13, 4.25, and 4.26); Dr. Patrick Naulleau of Lawrence Berkeley National Laboratory (Figs. 2.14 and 4.18); Mr. Toru Fujinami and Mr. Sam Gunnell of Energetiq (Fig. 2.18); Dr. Erik Hosler (Figs. 2.25 and 2.28); Dr. Winfried Kaiser of Carl Zeiss (Figs. 3.4 and 3.5); Dr. Yulu Chen of Synopsys, Inc. (Fig. 3.7); Dr. Sudhar Raghunathan (Fig. 3.9); Dr. Carlos A. Duran of Corning, Inc. (Figs. 3.11 and 3.12); Dr. David Trumper of MIT and Dr. Won-Jon Kim of Texas A&M University (Fig. 3.17); Dr. Obert Wood (Fig. 4.6); Dr. Uzodinma Okoroanyanwu of Univ. of Massachusetts (Fig. 4.22); Mr. Preston Williamson of Entegris (Fig. 4.31); Prof. Takahiro Kozawa of Osaka University (Fig. 5.1); Prof. Takeo Watanabe of Hyogo University (Fig. 5.11); Dr. Timothy Weidman of Lam Research, Inc. (Fig. 5.23); Dr. Lieve Van Look of Imec (Fig. 6.13); Dr. Peter De Bisschop of Imec (Fig. 6.18); Dr. Jan Van Schoot of ASML (Fig. 7.5); Dr. Yuya Kamei of Tokyo Electron Ltd. (Fig. 7.7); Mr. Masashi Sunako of Lasertec USA, Inc. (Fig. 8.4); Ms. Anna Tchikoulaeva of Lasertec USA, Inc. (Fig. 8.5); Dr. Klaus Zahlten of Carl Zeiss SMT GmbH (Fig. 10.7); and Dr. Vadim Vanine of ASML (Fig. 10.12). Finally, I would like to thank my wife, Laurie, for her enduring patience.

> Harry J. Levinson August 2020