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Final Remarks 

Recent efforts in the technology of infrared detectors have focused mostly on large 
electronically scanned focal plane arrays (FPAs). The increased sensitivity and resolution 
in the system complexity of FPAs offer significant advantages in military as well as 
civilian applications in thermal imaging, guidance, reconnaissance, surveillance, ranging 
and communication systems.  

Figure 1 shows a plot of the thermal detectivity (300 K, 0° FOV) versus operating 
temperature for the most prominent detector technologies. The thermal detectivity is used 
here to compare the various technologies for equivalent NETD irrespective of 
wavelength. The thermal D* figure of merit for photon detectors was obtained by 
equating the NETD of an ideal thermal detector for a given D* to the NETD of an ideal 
photon detector with a given D

pλ
∗ . The various regions show the appropriate applications

including “low-cost” uncooled thermal detectors, “high-performance uncooled” for night 
vision enhancement and earth reconnaissance, “tactical” for most imaging uses, and 
“strategic” for various military-type instruments. For low-cost applications, the imagery 
is limited by the thermal conduction to the pixels. Photocurrent shot noise should limit 
the detectivity for other thermal imagers. Strategic sensors generally detect point targets, 
so the D* must be as high as possible within the constraint that the cooler must not pose 
overriding size, weight, reliability or cost issues. High-performance near-infrared has 
similar performance requirements, but can only provide a minimum of cooling because 
cost and weight minimization is critical. The extrinsic silicon detectors offer very high 
sensitivity, but at very low operating temperature, which is prohibitive in most 
applications. The cryogenically cooled InSb and HgCdTe arrays have comparable array 
size and pixel yield at the MWIR spectral band. However, wavelength tunability and high 
quantum efficiency have made HgCdTe the preferred material. This material assures the 
highest possible operating temperature for a given set of operating conditions. Thus, the 
associated cooling and system power requirements can thus be optimally distributed. The 
monolithic PtSi Schottky barrier FPAs lead all other technologies with respect to array 
size (106 pixels); however, the thermal mismatch barrier in hybrid FPAs has been 
recently overcome by developers (InSb and HgCdTe arrays). 

Historically, thermal detectors were the first detectors operated in the infrared range 
of electromagnetic spectrum. Since circa 1930, the development of infrared technology 
has been dominated by the narrow-gap semiconductor photodetectors. In comparison 
with photon detectors, thermal detectors have been considerably less exploited in 
commercial and military systems. In the last decade, however, it has been shown that 
extremely good imagery can be obtained from large thermal detector arrays operating 
uncooled at TV frame rates. The speed of thermal detectors is quite adequate for 
nonscanned imagers with two-dimensional detectors. 
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Fig. 1. Thermal D* versus operating temperature for different FPA technologies (after     Ref. 1). 

During the past four decades, mercury cadmium telluride (HgCdTe) has became the 
most important semiconductor for the middle and long wavelength (λ = 3–30 µm) 
infrared (IR) photodetectors. The short-wavelength region has been dominated by III–V 
compounds (InGaAs, InAsSb, InGaSb). From fundamental considerations, HgCdTe is the 
most important semiconductor alloy system for infrared detectors. There have been 
numerous attempts to replace HgCdTe with alternative materials. At present, several 
other variable-gap alloy systems are known, including closely related mercury alloys 
HgZnTe, HgMnTe, lead tin tellurides and selenides, InAsSb, III-VI compounds with 
thallium and bismuth, free-carrier detectors and low-dimensional solids.2–5 The main 
motivations are the technological problems of this material. One of them is a weak Hg–
Te bond, which results in bulk, surface and interface instabilities. Uniformity and yield 
are still issues. Nevertheless, HgCdTe remains the leading semiconductor for IR 
detectors. The most important reasons are 

• Not one of the new materials offers fundamental advantages over HgCdTe.
Detectivity of any type of infrared photodetector is proportional to (α/G)1/2 (see
Section 1.3), where α is the absorption coefficient and G is the thermal generation
rate. While this figure of merit of various narrow-gap semiconductors seems to be
very close to that of HgCdTe, the extrinsic silicon and germanium detectors,
Schottky-barrier photoemissive detectors and GaAs/AlGaAs superlattice devices have
a several orders of magnitude smaller α/G ratio.

• HgCdTe exhibits extreme flexibility: it can be tailored for optimized detection at any
region of IR spectrum, dual and multicolor devices can be easily constructed.
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• The present development of IR photodetectors has been dominated by complex
bandgap heterostructures. Among various variable-bandgap semiconductor alloys,
HgCdTe is the only material covering the whole IR spectral range that has nearly the
same lattice parameter (see Fig. 10.2). The difference between the lattice parameter of
CdTe (Eg = 1.5eV) and Hg0.8Cd0.2Te (Eg = 0.1 eV) is ≈ 0.2%. Replacing a small
fraction of Cd with Zn, or Te with Se, can compensate the residual lattice mismatch.
The independence of lattice parameter from composition is a major advantage of
HgCdTe over any other materials.

In Fig. 2, plots of the calculated temperature required for background-limited (BLIP)
operation in 30o FOV are shown as a function of cutoff wavelength. We can see that the 
operating temperature of HgCdTe detectors is higher than for other types of photon 
detectors. HgCdTe detectors with background limited performance operate with 
thermoelectric coolers in the MWIR range; instead, the LWIR detectors (8 ≤ λc ≤ 12 µm) 
operate at ≈ 100 K. HgCdTe photodiodes exhibit a higher operating temperature 
compared to extrinsic detectors, silicide Schottky barriers and quantum well infrared 
photodetectors (QWIPs). However, the cooling requirements for QWIPs with cutoff 
wavelengths below 10 µm are less stringent in comparison with extrinsic detectors and 
Schottky barrier devices. HgCdTe is characterised by a high optical absorption 
coefficient and quantum efficiency and relatively low thermal generation rate as 
compared to extrinsic detectors, silicide Schottky barriers and QWIPs. 

Fig. 2. Estimation of the temperature required for background limited operation of different 
types of photon detectors. In the calculations FOV = 30o and TB = 300 K are assumed (after Ref. 
6). 
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To summarize, despite serious competition from alternative technologies and slower 
progress than expected, HgCdTe is unlikely to be seriously challenged for high-
performance applications, applications requiring multispectral capability and fast 
response. The recent successes of competing cryogenically cooled detectors are due to 
technological, not fundamental issues. There are good reasons to think that the steady 
progress in epitaxial technology would make HgCdTe devices much more affordable in 
the near future. The much higher operating temperature of HgCdTe compared to 
Schottky barrier devices and low-dimensional solid devices may become a decisive 
argument in this case. In applications for short-range thermal imaging systems, a serious 
challenge comes from solid state arrays of thermal detectors (bolometers and 
pyroelectric), which are expected to take over and increase the market for uncooled short-
range imaging systems. 

The most important aim in infrared detector technology is to make detectors cheaper 
and convenient to use. Cooling requirements add considerably to the cost, bulk, weight, 
power consumption and inconvenience of IR systems. In contrast, the uncooled detectors 
are lightweight, small in size and convenient to use.  

The long-term picture could change as a result of current research activity, both for 
single-element detectors and arrays. Currently, no known variable-gap material can offer 
fundamental advantages in terms of performance or cost of production. A challenge may 
come rather from materials exhibiting higher stability. It is expected that 

• Thermal detector arrays will increase in size and improve in thermal sensitivity to a
level satisfying high-performance applications at ambient temperature.

• The low-temperature growth of HgCdTe on alternative substrates containing silicon
circuits may render Schottky barrier devices with their fundamental physical
limitations and stringent cooling requirements.

• The narrow-gap intrinsic semiconductors, possibly those operated in nonequilibrium
mode, are likely to be unchallenged for high detectivity and fast single-element and
small-array IR systems.

• The situation concerning quantum well structures and superlattices is not clear;
however, unique detection capabilities may arise from the low-dimensional solids.
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