In vivo optical coherence tomography–based scoring of oral mucositis in human subjects: a pilot study

Hilari Kawakami-Wong
Shuguang Gu
Marie J. Hammer-Wilson
University of California, Irvine
Beckman Laser Institute
1002 Health Sciences Road East
Irvine, California 92612

Joel B. Epstein
University of Illinois at Chicago
College of Medicine
College of Dentistry and Cancer Center
Chicago, Illinois 60612

Zhongping Chen
Petra Wilder-Smith
University of California, Irvine
Beckman Laser Institute
1002 Health Sciences Road East
Irvine, California 92612

Abstract. A preliminary study to assess noninvasive optical coherence tomography (OCT) for early detection and evaluation of chemotherapy-induced oral mucositis in five patients. In five patients receiving neoadjuvant chemotherapy for primary breast cancer, oral mucositis was assessed clinically, and imaged using noninvasive OCT. Imaging was scored using a novel imaging-based scoring system. Conventional clinical assessment using the Oral Mucositis Assessment Scale was used as the gold standard. Patients were evaluated on days 0, 2, 4, 7, and 11 after commencement of chemotherapy. OCT images were visually examined by one blinded investigator. The following events were identified using OCT: (1) change in epithelial thickness and subepithelial tissue integrity (beginning on day 2), (2) loss of surface keratinized layer continuity (beginning on day 4), (3) loss of epithelial integrity (beginning on day 4). Imaging data gave higher scores compared to clinical scores earlier in treatment, suggesting that the imaging-based diagnostic scoring was more sensitive to early mucositis change than the clinical scoring system. Once mucositis was established, imaging and clinical scores converged. Chemotherapy-induced oral changes were identified prior to their clinical manifestation using OCT, and the proposed scoring system for oral mucositis was validated for the semi-quantification of mucositis change. © 2007 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.2779025]

Keywords: mucositis; imaging; optical coherence tomography; human.

1 Introduction

1.1 Oropharyngeal Mucositis

Oropharyngeal mucositis (OM) occurs in 30 to 75% of chemotherapy patients, in up to 75% of patients receiving hematopoietic cell transplant (HCT), and in essentially all patients receiving head and neck radiation in doses over 5000 cGy. Ulcerative mucositis is the most common cause of severe pain in HCT and treatments for hematologic cancer. Although advances in HCT have led to a modest reduction in the frequency of severe oral ulcerative mucositis, changes in treatment of head and neck cancer including combined chemotherapy and irradiation and changes in radiation therapy dosing schedules have increased the severity and duration of mucositis in these patients. OM may lead to alterations in cancer therapy, dose reduction, delay in scheduled therapy, and may require interruption or termination of planned therapy, with the potential for impact on patient care. In addition, OM is associated with a negative impact on quality of life (QOL) and increased cost of care. OM is the most common distressing and disabling acute complication of cancer chemotherapy, and radiotherapy, as reported by patients, and is among the most significant major dose-limiting toxicities of cancer therapy. Clinically, OM is characterized by mucosal changes, including erythema and ulceration, which cause oropharyngeal pain. Currently, prediction of onset and severity of mucositis is not possible, thereby hampering efforts at targeted intervention and optimizing treatment effectiveness. The inability to characterize and measure mucositis accurately has prevented accurate evaluation of lesions and treatments. The ability to detect early, monitor, and characterize OM would greatly enhance our developing understanding of the pathogenesis of mucositis, leading to improved preventive and treatment strategies and mucosal repair.

1.2 Optical Coherence Tomography

Optical coherence tomography (OCT) is a high-resolution optical technique that permits minimally invasive imaging of near-surface abnormalities in complex tissues. Conceptually, it has been compared to ultrasound scanning. Both ultrasound and OCT provide real-time structural imaging, but unlike ultrasound, OCT is based on low-coherence interferometry, using broadband light to provide cross-sectional, high-resolution subsurface tissue images. Broadband laser light waves are emitted from a source and directed toward a beamsplitter; one wave is sent toward a reference mirror with...
known path length and the other toward the tissue sample. After the two beams reflect off the reference mirror and tissue sample surfaces at varying depths within the sample, the reflected light is directed back toward the beamsplitter, where the waves are recombined and read with a photodetector. The image is produced by analyzing interference of the recombined light waves. Cross-sectional images of tissues are constructed in real time, at near histological resolution (approximately 10 μm with current technology). This permits in vivo noninvasive imaging of the microscopic characteristics of epithelial and subepithelial structures, including (1) depth and thickness, (2) histopathological appearance, and (3) peripheral margins. With a tissue penetration depth of 1 to 2 mm, the imaging range of the OCT technology described in this paper is suitable for imaging of the oral mucosa. Previous studies using OCT have demonstrated the ability to evaluate characteristics of epithelial, subepithelial, and basement membrane structures and show the potential for near histopathological-level resolution and close correlation with histological appearance. Two recent studies have reported the successful use of OCT for the early detection and quantification of radiation- and chemotherapy-induced mucositis in the mouse and hamster models.

In this feasibility study, the ability of OCT to detect and characterize chemotherapy-induced oral mucositis was evaluated in five human subjects.

2 Materials and Methods

2.1 Human Subjects, Clinical and Imaging Procedure

Five female human subjects receiving neoadjuvant chemotherapy for primary breast cancer who had developed oral mucositis during the previous chemotherapy cycle were consented and enrolled in this study as approved under University of California—Irvine’s Independent Review Board’s approval 2002-2805. The likelihood of developing mucositis is high in patients who have suffered from mucositis during the previous cycle of chemotherapy. Informed written consent was obtained from all patients. After enrollment in this study, and prior to the commencement of the cycle of chemotherapy, a full oral examination was completed, and baseline photographs of the healthy oral mucosa were taken in the following areas: left and right cheeks, dorsal and ventral surfaces of the tongue, lateral borders of the tongue, upper and lower labial sulci, buccal and labial gingivae. Photographs were immediately printed out, and the scan line locations for the baseline OCT imaging conducted at that time were marked on the photographs. Imaging was performed using a hand-held fiber-optic probe and 6-mm scan lines. Each location was scanned three times to assess the reproducibility of the images obtained. This procedure was repeated at 2, 4, 7, and 11 days after the commencement of chemotherapy. These imaging time points were dictated by patient availability. Ideally the patients would have been imaged daily, especially in the early days immediately after commencement of chemotherapy. Clinical evaluation was documented at each time point using the standard Oral Mucositis Assessment Scale (OMAS) (by one observer, PWS) to assess erythema and ulceration in oral tissue, combined with a visual analog pain scale (VAS) (Tables 1 and 2). OMAS was developed by a working group and validated as published in Cancer.

<table>
<thead>
<tr>
<th>Location</th>
<th>Ulceration</th>
<th>Erythema</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lip—upper</td>
<td>0, 1, 2, or 3</td>
<td>0, 1, or 2</td>
</tr>
<tr>
<td>Lip—lower</td>
<td>0, 1, 2, or 3</td>
<td>0, 1, or 2</td>
</tr>
<tr>
<td>Buccal mucosa—right</td>
<td>0, 1, 2, or 3</td>
<td>0, 1, or 2</td>
</tr>
<tr>
<td>Buccal mucosa—left</td>
<td>0, 1, 2, or 3</td>
<td>0, 1, or 2</td>
</tr>
<tr>
<td>Tongue ventrolateral—right</td>
<td>0, 1, 2, or 3</td>
<td>0, 1, or 2</td>
</tr>
<tr>
<td>Tongue ventrolateral—left</td>
<td>0, 1, 2, or 3</td>
<td>0, 1, or 2</td>
</tr>
<tr>
<td>Floor of mouth</td>
<td>0, 1, 2, or 3</td>
<td>0, 1, or 2</td>
</tr>
<tr>
<td>Palate—soft</td>
<td>0, 1, 2, or 3</td>
<td>0, 1, or 2</td>
</tr>
<tr>
<td>Palate—hard</td>
<td>0, 1, 2, or 3</td>
<td>0, 1, or 2</td>
</tr>
</tbody>
</table>

OMAS has been shown to be highly reproducible between observers (r > 0.8), responsive over time (r > 0.9), and accurately record the anatomic elements considered to be associated with mucositis. This scoring tool has since been employed in several multicenter mucositis studies.
position time for each image was <1 s. All OCT images were acquired with 1200 × 510 pixels, which equates with 6 mm (length) × 1.6 mm (depth) for most tissues.

2.3 Evaluation of OCT Data

OCT images were coded to blind the evaluator (PWS) to their source. All images were scored in one session and evaluated for changes in epithelial thickness, loss of surface integrity, and loss of subsurface integrity. These three scores combined to generate one cumulative final score as shown in Table 3. Where several diagnostic scores for any attribute in one lesion were possible due to lesion heterogeneity, the highest (most severe) attribute score that applied to that lesion was used. Due to the small number of subjects, and the exploratory nature of this study, a detailed statistical analysis of the data was not undertaken.

3 Results

3.1 Clinical Data

We had anticipated potential movement artifacts during OCT registration in human subjects, however, when patients were seated in a chair with a headrest and neck support, this was not a problem at all, as evidenced by Fig. 1. Changes evident in the oral mucosa following chemotherapy included the following: no clinical changes, mucosal erythema, microulceration, frank open ulceration, surface necrosis and sloughing, mucosal breakdown and healing. On day 2, no clinical evidence of mucositis was observed in any patient. By day 4, mucositis was evident in 4 out of 5 patients. By day 7 the fifth patient showed clinical signs and symptoms of oral mucositis.

For the semiquantification of clinical changes, a cumulative scoring system on a scale of 0 to 5 based on the OMAS scale was used2,3 (Tables 1 and 2). Figure 2 shows mean OMAS score (standard error (SE)) over time for the five patients included in this preliminary study.

Table 3 OCT-based scale for assessing oral mucositis.

<table>
<thead>
<tr>
<th>Table 3 OCT-based scale for assessing oral mucositis.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scoring of OCT-visible mucositis changes</td>
</tr>
<tr>
<td>A. Epithelial thickness</td>
</tr>
<tr>
<td>Score 0: Same as day 0 (±20%)</td>
</tr>
<tr>
<td>Score 1: Reduced versus day 0 by <50%</td>
</tr>
<tr>
<td>Score 2: Reduced versus day 0 by 50 to 99%</td>
</tr>
<tr>
<td>Score 3: Reduced versus day 0 by >99 to 100%</td>
</tr>
<tr>
<td>B. Loss of surface integrity</td>
</tr>
<tr>
<td>Score 1 if yes.</td>
</tr>
<tr>
<td>C. Loss of subsurface integrity</td>
</tr>
<tr>
<td>Score 1 if yes.</td>
</tr>
</tbody>
</table>

Thus, total scoring range for OCT (structural) lies between 0 and 5.

3.2 Imaging Data (Figs. 1 and 2)

By day 2, 4 out of 5 patients showed signs of mucositis using the OCT-based imaging scale—these were the same patients who developed the first signs of clinical mucositis between days 2 and 4. By day 4, all five patients showed mucositis based on the imaging data. Using imaging, the following events were detected: (1) change in epithelial thickness and loss of subepithelial integrity (day 2 onward), (2) loss of surface keratinized layer continuity (day 4 onward), (3) loss of epithelial integrity (day 7 onward).

Figure 1 shows OCT scans acquired from a patient receiving 5-fluorouracil continuous intravenous (IV) infusion for 4 consecutive weeks. The patient developed clinical grade I mucositis after 4 days and grade II after 8 days. The OCT image acquired 2 days after chemotherapy [Fig. 1(b)] demonstrates mucositis change. Observations include epithelial thinning by...
an average of approximately 50% and disruption of the sub-
epithelial layers just below the basement membrane. Further
epithelial atrophy is seen 7 and 11 days after chemotherapy
[Figs. 1(c) and 2(d)], with infiltrate in the area of the base-
ment membrane, disruption of the adjacent epithelial and sub-
epithelial tissues, and breakdown of the epithelial surface. The
somewhat reduced imaging capability of OCT at days 7 and
11 in the deeper tissues [Figs. 1(c) and 1(d)] may be due to
hyperemia in the tissues. Light at 1300 nm is strongly ab-
sorbed by blood, mainly due to its water content. Thus mu-
cositic change was detected earlier using OCT imaging than
by conventional clinical examination and predicted changes
noted later in the visual clinical examination. Imaging arti-
facts with the appearance of “smearing” are visible on the
right side of Fig. 1(a), and the left side of Fig. 1(d).

3.3 Comparison of Imaging Scores versus Clinical Mucositis Scores (OMAS)
The imaging data tended to give higher scores compared to
clinical scores early on (days 0 to 4—see Fig. 2). However,
correspondence was good at days 7 and 11. These data indi-
cate that the imaging-based diagnostic approach was more
sensitive to early change than the conventional clinical ap-
proach. Once mucositis was established and the clinical mani-
festation of the condition was more advanced, the imaging
and clinical scores converged. Clinically, this finding was
highly relevant, as earlier detection of mucositis change will
allow the earlier and more effective initiation of antimucositic
measures.

4 Discussion
Using OCT, noninvasive, rapid, real-time imaging of oral mu-
cosa and identification of structural changes during the de-
velopment of oral mucositis was possible. The semiquantitative
imaging-based scoring system performed well, with the imaging
data providing evidence of mucositis prior to clinical find-
ings and showing higher scores early in the course of mucosal
damage compared to clinical scores. These findings are im-
portant as they suggest that the imaging-based diagnostic
method described here is more sensitive to early mucositis
than the clinical scoring system and predicts future clinical
mucositis. Clinically, this finding is highly relevant, as earlier
detection of mucosal damage will allow the potential for ear-
lier intervention and offers the potential for prevention or re-
duction of severity of mucositis. In addition, OCT imaging
can provide more effective investigation of preventive and
therapeutic interventions for mucositis. Once mucositis was
established and the clinical manifestation of the condition was
more advanced, the imaging and clinical scores converged.
Two animal studies investigating the use of OCT for detecting
and quantifying oral mucositis also reported the potential of
using this approach to detect mucositis changes in murine
mucosa (1) several days before their clinical manifestation
and (2) in cases where the mucositis damage remained
subclinical.30,31

Although OCT technology is currently limited in its avail-
ability to clinicians, its accessibility is increasing rapidly as
costs diminish and turnkey systems become available.

5 Conclusion
These preliminary studies demonstrate the potential of nonin-
vasive OCT for detecting and semiquantifying oral cancer
therapy-induced mucositis. More extensive studies are in
progress that will permit a more comprehensive evaluation
and statistical analysis of this approach.

Acknowledgments
This work was supported by Tobacco-Related Disease Re-
search Program Grant No. 14IT-0097 (PWS, MJHW); Na-
tional Institutes of Health Laser Microbeam and Medical Pro-
gram Grant No. P41-RRO1192 (PWS, MJHW, ZC); and
National Institutes of Health Grants No. EB-00255, CA -
91717, and RR-01192 (ZC).

References
Pyntia, and J. Epstein, “Review of current treatment practices for
carcinoma of the head and neck,” Expert Opin. Pharmacother. 6,
M. Hauer-Jensen, and E. B. Rubenstein, “Perspectives on cancer
therapy-induced mucosal injury: Pathogenesis, measurement, epide-
miology, and consequences for patients,” Cancer 100, 1995–2025
(2004).
3. S. T. Sonis, G. Oster, H. Fuchs, L. Bellm, B. Z. Williamson, J. Edels-
berg, D. E. Peterson, M. M. Schubert, F. K. Spijkervert, and M.
Horowitz, “Oral mucositis and the clinical and economic outcomes of
2205 (2001).
5. L. S. Elting, C. Cooksley, M. Caambers, S. B. N. Cantor, F. Manzu-
illo, and E. B. Rubenstein, “The burdens of cancer therapy: Clinical
and economic outcomes of chemotherapy-induced mucositis,” Can-
6. J. B. Epstein, P. Stevenson-Moore, S. M. Jackson, J. H. Mohamed,
and J. J. Spinelli, “Prevention of oral mucositis in radiation therapy:
A controlled study with benzydamine hydrochloride rinse,” Int. J.
7. J. B. Epstein, “Infection prevention in bone marrow transplantation
and radiation patients,” NCI Monogr. 9, 73–85 (1990).
ment of pain in patients with orofacial cancer: A review,” The Pain
10. K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann,
and A. F. Fercher, “Imaging ex vivo healthy and pathological human
brain tissue with ultra-high-resolution optical coherence tomogra-
High-resolution imaging in nontransparent tissue,” IEEE J. Sel. Top.
12. P. J. Tadrous, “Methods for imaging the structure and function of
living tissues and cells: I. Optical coherence tomography,” J. Pathol.
13. J. A. Izatt, M. D. Kulkarni, K. Kobayashi, M. V. Sivak, J. K. Barton,
and A. J. Welch, “Optical coherence tomography for biodiagnostics,”
14. Z. Ding, “High-resolution optical coherence tomography over a large
15. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson,
W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito,
16. E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S.
Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging
17. J. G. Fujimoto, M. R. Hee, J. A. Izatt, S. A. Boppart, E. A. Swanson,
C. P. Lin, J. S. Schuman, and C. A. Puliafito, “Biomedical imaging

Journal of Biomedical Optics
051702-4
September/October 2007 • Vol. 12(5)

