Accurate viscosity measurements of flowing aqueous glucose solutions with suspended scatterers using a dynamic light scattering approach with optical coherence tomography

Andrew Weatherbee
Ivan Popov
Alex Vitkin
Accurate viscosity measurements of flowing aqueous glucose solutions with suspended scatterers using a dynamic light scattering approach with optical coherence tomography

Andrew Weatherbee,a Ivan Popov,a and Alex Vitkinb,b,c,*

aUniversity of Toronto, Department of Medical Biophysics, Toronto, Ontario, Canada
bUniversity of Toronto, Department of Radiation Oncology, Toronto, Ontario, Canada
cUniversity Health Network, Ontario Cancer Institute, Division of Biophysics and Bioimaging, Toronto, Ontario, Canada

Abstract. The viscosity of turbid colloidal glucose solutions has been accurately determined from spectral domain optical coherence tomography (OCT) M-mode measurements and our recently developed OCT dynamic light scattering model. Results for various glucose concentrations, flow speeds, and flow angles are reported. The relative "combined standard uncertainty" \(u_c(\eta) \) on the viscosity measurements was \(\pm 1\% \) for the no-flow case and \(\pm 5\% \) for the flow cases, a significant improvement in measurement robustness over previously published reports. The available literature data for the viscosity of pure water and our measurements differ by 1% (stagnant case) and 1.5% (flow cases), demonstrating good accuracy; similar agreement is seen across the measured glucose concentration range when compared to interpolated literature values. The developed technique may contribute toward eventual noninvasive glucose measurements in medicine.

Keywords: optical coherence tomography; dynamic light scattering; Brownian motion; speckle; viscosity; glucose.

1 Introduction

Recently, there has been significant interest in studying the properties of coherent radiation scattered by Brownian particles under optical coherence tomography (OCT) conditions. This interest has been motivated by a wide range of emerging biomedical applications, including capillary velocimetry,1,2 biofilm growth measurement,3 OCT angiography and lymphangiography,4–6 subcellular dynamics measurements,7 and noninvasive blood glucose monitoring.8 The coherent radiation scattered from Brownian particles contains information about the suspending fluid; such as viscosity and flow parameters, and about the scattering particles themselves, such as their size and shape. For example, when the suspending fluid is stagnant, well-established dynamic light scattering (DLS) theory allows the fluid viscosity to be determined via measurement of the Lorentzian power spectrum of the scattered radiation;9 increasing the viscosity of the fluid decreases the random Doppler shifts introduced by the Brownian particles and narrows the measured power spectrum.

However, if the fluid is flowing, one needs to take into account the additional spectral broadening that results from the flow-caused speckle fluctuations recorded by the detector. Modeling the OCT voxel with a two-dimensional Gaussian illumination intensity profile in the transverse plane and a Gaussian response profile along the axial direction (coherence length of the OCT light source), it has been shown that this additional spectral broadening due to flow produces a Gaussian shape in the measured power spectrum.10,11 The combination of the Brownian motion and flow processes can thus be represented by the frequency space convolution of the corresponding Lorentzian and Gaussian line shapes, yielding the so-called Voigt spectrum.12 Measurement of this Voigt spectrum under OCT conditions allows for measurements of diffusivity and flow velocity.13–15 The ability to make accurate measurements of fluid viscosity under both stagnant and flowing conditions is important for a number of biomedical applications, including noninvasive blood glucose monitoring. In addition to glucometry, increased blood viscosity is also important in cardiology—it has been linked to many major cardiovascular risk factors, including metabolic syndrome, type-II diabetes, elevated low-density lipoprotein and low high-density lipoprotein cholesterol levels, high blood pressure, obesity, and smoking.16,17 Given the tremendous importance and significant challenges inherent in the unmet clinical need, noninvasive glucometry is an active area of OCT research.18–21 Currently, two OCT-based approaches are explored for noninvasive glucometry in blood, based on signal attenuation22–24 and correlation function analyses.25,26 However, accuracy, robustness, and sensitivity/specificity are currently insufficient for clinical implementations, for example, in diabetic patients use. Specifically, attenuation techniques are complicated due to the attenuation as a function of glucose concentration having considerable fluctuations;27,28 therefore, this approach does not appear promising for use in clinical practice. In this paper, we thus pay particular attention to quantifying the measurement error and "combined standard uncertainty" \(u_c(\eta) \) of our OCT fluid viscosity determination. The employed uncertainty analysis is based on the widely accepted guide to the expression of uncertainty in measurement (GUM) standards.29

1083-3668/2017/$25.00 © 2017 SPIE
Much of the existing research on viscosity measurements of aqueous glucose solutions at low (mM range) concentrations comes from the food industry.13,32 However, these studies typically do not report the errors or uncertainty of their measurements; further, reported viscosity values are often in conflict. For example, one food industry publication33 (which in fact does report measurement uncertainty) provides an equation for viscosity as a function of temperature and glucose concentration, yet the equation’s predictions do not agree with viscosity data in a standard reference handbook.34

The typical method to determine fluid viscosity is by use of a viscometer, whereby the drag resistance during relative motion of a stationary object and flowing fluid allow the viscosity of the latter to be determined. For example, one can measure the time taken for a fluid volume to pass through a capillary of a given diameter and then analyze the data via well-known fluid mechanics formulas. However, viscometer measurements are essentially impossible to perform \textit{in situ} or \textit{in vivo}. Conversely, DLS OCT methodology measures coherent radiation scattered by an intact sample and holds promise for noninvasive measurement of fluid viscosity and potentially even \textit{in vivo} glucose concentration measurements.22

The present research thus has two objectives. First, we demonstrate DLS M-mode OCT measurements of backscattered radiation spectra to determine the viscosity of a suspending fluid with good accuracy and low uncertainty. Specifically, we measure the viscosity of aqueous glucose solutions over the concentration range of 0 to 1600 mM glucose with a relative combined standard uncertainty [relative $u_c(\eta)$] of $\pm 1\%$ (1 part in 100) under stagnant (no-flow) conditions and $\pm 5\%$ (1 part in 20) under flowing conditions, where relative $u_c(\eta)$ is defined as $[u_c(\eta)/\text{mean}(\eta)] \times 100\%$. These are robust results, the uncertainty being considerably lower than previous reports.13 Second, we experimentally validate a mathematical model, which was recently developed to describe the statistical properties of radiation scattered from flowing Brownian particles, not only in the focal plane of an OCT optical system but also outside of it.12,35 It is stressed in recent publications36,37 that there is a lack of experimentally validated quantitative models for OCT measurements of flowing Brownian particles, and this paper helps to address this need. Our theoretical formalism does indeed describe the data well, and the resultant fitting parameters (which enable determination of fluid viscosity) agree with literature and also offer a significant improvement in uncertainty.

2 Experimental Setup

A research fiber-based spectral domain OCT (SD-OCT) system, operating in M-mode, was used for this study (Fig. 1). Its detailed description is given in Ref. 38; the main points are briefly highlighted here. The system is powered by a superluminescent diode unit (D-1300 Superlum Ltd.) with emission bandwidth of 121.5 nm full width at half maximum, centered at 1313.1 ± 0.07 nm39 and 12 mW output power. The detection module is comprised of a high-resolution spectrometer (P&P Optica) interfaced with a 1024 pixel, linear array near-infrared CCD camera (SU1024LDH-1.7 μm, UTC Aerospace Systems) with a readout rate selected to be 1123 or 2237 Hz for all experiments described below.

In the sample arm, the radiation is emitted from the single-mode fiber and shaped by an optical system, including an objective lens with a 20 mm focal length, which produces a Gaussian beam with a radius w_0 of 11.5 ± 0.3 μm at the waist in air, so that the transverse resolution is 23 μm. The beam profile was characterized using a scanning slit optical beam profiler (Thorlabs Inc.). The axial OCT resolution defined by the source coherence length l_c was measured using a front-surface mirror, yielding $l_c = 13.0 \pm 0.5 \mu m$ full width at 1/e OCT signal level in air. The Rayleigh range of the beam in water was $z_R = \frac{\pi w^2}{\lambda_0} = 415 \mu m$, where $n = 1.320 \pm 0.001$ is the water refractive index at $\lambda_0 = 1313.1$ nm.30,41 To avoid the impact of the point spread function tail truncation along the sample arm axis by the walls of the glass capillary, data collection was restricted to be within $\pm 40 \mu m$ of the capillary center.

Distilled water was mixed with powdered D-(+)-glucose (Dextrose) (Sigma-Aldrich Inc.) to prepare eight phantoms with the following concentrations: 0, 25, 50, 100, 200, 400, and 1600 mM glucose. Polystyrene microspheres (Bangs Laboratories Inc.) of radius $R = 107.6 \pm 0.8$ nm42 were then suspended in each phantom at a concentration of 0.5% by volume, this scatterer concentration was chosen to avoid complications due to multiple scattering effects. The scattering coefficients for the phantoms, calculated via Mie theory, were from 0.24 cm-1 (glucose free) down to 0.18 cm-1 (1600 mM); this variation in μ_s for a constant concentration of scattering micro-particles is due to the glucose’s refractive index matching effect.34 All phantoms appeared opaque and milky-white to the naked eye as they contained ~5000 spheres per voxel, and can be considered turbid colloidal suspensions.43 A micro-bore glass capillary with an inner diameter of 165 ± 1 μm (Accu-Glass Inc.) was used to house the glucose + microsphere mixtures in water. The flow was driven by a syringe pump actuated by a stepper motor operating in 17 mm steps at ~1 ms per step (New Era Pump Systems Inc.), effectively enabling continuous flow. In the flow experiments, the velocity at the capillary center was calculated to be 1.94 ± 0.01 mm/s using the volumetric flow rate from the syringe pump and the Poiseuille parabolic velocity profile equation for laminar flow through a cylinder. This flow speed was chosen so that the contributions to spectrum broadening were similar from both the Brownian motion (random Doppler shifts) and the flow (translational speckle motion).

The first data set was recorded from the scattering phantoms under stagnant (no-flow) conditions with an A-scan sampling rate of 1123 Hz and total sampling time of ~7 minutes per phantom. The perpendicular-flow data set was recorded in the same way. The angled-flow data set (81° between the optical axis and the flow direction) used a sampling rate of 2237 Hz for a total of
∼7 minutes per phantom. For each A-scan, 1024 spectrum amplitude values were obtained on an equally spaced wavevector scale; the inverse Fourier transform produced 512 complex values, as a function of depth into the sample. Repeated A-scans meant that the complex OCT signal (real and imaginary parts of the field scattered from the voxel) was sampled as a function of time, and the power spectrum (frequency-space, f) of the scattered field was found by taking the square modulus of the Fourier transform of the real part (time-space, t) of the complex OCT signal. It was demonstrated in Ref. 13 that even with a flowing sample, the temporal correlation function (and consequently the power spectrum) does not depend on the distance between the scattering volume and the beam waist; thus, there was no need to accurately position the scattering volume to a specific depth within the capillary (such as placing the beam waist at the center of the capillary or any other position of interest).

3 Spectral Properties of the Radiation Scattered from Stagnant and Flowing Brownian Particles

3.1 No-Flow Conditions

Here, we briefly summarize some background theoretical results from Refs. 10, 12, and 35 needed to calculate the viscosity of a stagnant fluid from coherent light scattering measurements. This is a well-established problem in DLS theory; the more viscous the fluid, the slower are the speeds of the Brownian particles suspended in it, resulting in smaller Doppler shifts in the scattered radiation and a narrower power spectrum. Under stagnant conditions, DLS theory states that the power spectrum can be described by a Lorentzian function

\[L(f) = \frac{1}{\left(\frac{1}{2\pi\tau_b} + f^2\right)} \quad (1) \]

where \(\tau_b = \frac{4\pi}{fD} \) is the decay time constant (under heterodyne conditions) due to Brownian motion, \(k = \frac{2\eta}{T} \), \(\lambda \) is the light wavelength in the suspending fluid, \(D \) is the spherical particle diffusivity given by the Einstein–Stokes equation \(D = \frac{k_BT}{6\pi\eta r} \), \(k_B \) is the Boltzmann’s constant, \(T \) is the absolute temperature, \(\eta \) is the liquid viscosity, and \(R \) is the particle radius. The half width at half maximum (HWHM) of the Lorentzian in Eq. (1) is given by

\[\text{HWHM}_b = \frac{1}{2\pi\tau_b} = \frac{(2k_D)^2}{\pi} = \frac{k^2 b r T}{3\pi^2\eta R} \quad (2) \]

Thus, given the radius of the spherical Brownian scatterers and knowing the experimental temperature, the viscosity of the suspending fluid can be determined by fitting a Lorentzian to the experimentally measured power spectrum, determining its HWHM and solving Eq. (2).

3.2 Flowing Conditions

In the case of Brownian particles suspended in a flowing fluid, the mathematical model for the power spectrum must take into account two sources of spectral broadening: the first is due to the random Doppler shifts caused by the Brownian motion as discussed above and the second is due to the dynamic speckle pattern on the detector that results from the flow. Recently, both of these effects have been taken into account under OCT conditions.\(^{12,13,35}\) In particular, Eq. (18) from Ref. 12 provides a mathematical expression that models the power spectrum of the scattered optical field using a Voigt function, which is the convolution in frequency space of a Lorentzian Eq. (1) (Brownian Doppler broadening) with a Gaussian \(^{12}\) that may be Doppler shifted \(G(f-f_D) = \exp\left[-\frac{[\pi\tau_b(f-f_D)^2]}{2\pi} \right] \) (translational speckle fluctuation broadening), where \(f_D \) is the Doppler shift due to flow, \(f_D = \frac{2\pi v_z}{\lambda} \), \(\lambda = \frac{2\pi}{k} \), and \(v_z \) is the flow velocity component in the axial direction \(\left(v_z = 0 \right. \) for the special case of perpendicular flow). The Voigt function, \(W(f-f_D) \), can be expressed analytically in terms of the complex error function \(\text{erf} \)

\[W(f-f_D) = \text{Re}\left\{ \left[\frac{\pi}{4\sqrt{2}} \exp\left\{ -\frac{1 - 2\pi i \tau_b (f-f_D)}{2\sqrt{2}} \right\} \right] \right\} \quad (3) \]

where \(i = \sqrt{-1} \) and \(\tau_b \) is the decay time constant due to translational flow motion, given by \(^{12,35}\)

\[\tau_b = \left[\frac{v_z^2 + v_r^2}{w_0^2} + \left(\frac{v_z}{L/2} \right)^2 \right]^{-1/2} = \left(v_z^2 \left(\frac{\sin(\theta)}{w_0} \right)^2 + \frac{1}{2} \left(\frac{\cos(\theta)}{L/2} \right)^2 \right)^{-1/2} \quad (4) \]

where \(v_z \) and \(v_r \) are the transverse components of the flow velocity, \(\theta \) is the Doppler angle (angle between OCT interrogation/detection optical axis and flow direction), \(L \) is the coherence length of the light source, and \(w_0 \) is the Gaussian beam radius at the waist. The values of these parameters are known/calculated/measured in the analysis that follows.

The challenges in fitting the Voigt function [Eq. (3)] to data using a least squares approach are well-known in the literature.\(^{35-48}\) One problem is that Eq. (3) contains a product of an exponential and complementary error function of the same argument, \(e^{-1/2(k_B f - f_D)} \); as the argument grows (with increasing frequency in the fitting region), the exponential rapidly increases, while the complementary error function rapidly decreases, causing stability problems in the fitting procedure for large \(f \) \((f > 500 \text{ Hz}) \) was problematic for fitting Eq. (3) in our data). To fit the full spectra, we used the MATLAB® algorithm from Ref. 47, which is accurate to within \(10^{-13} \).

This summarizes the main theoretical predictions from Refs. 10, 12, and 35 needed to calculate the viscosity of a fluid from coherent light scattering measurements. In Sec. 4 below, the viscosities of fluid samples are determined by fitting Eq. (1) (no-flow case) and Eq. (3) (flow cases) to our experimental spectral data and then using Eq. (2) to calculate the viscosity of the fluid samples. We note that the \(\tau_b \) in Eq. (3) is identical to the \(\tau_b \) in Eq. (1); this is because Eq. (3) was derived via a convolution in frequency space of Eq. (1) and a Gaussian function, as described above.

4 Results and Discussion

4.1 No-Flow Case

To determine the sample viscosity for the no-flow case, we fit Eq. (1) to the experimentally obtained power spectra with \(\tau_b \) as
the only fitting parameter and then use Eq. (2) to compute the viscosity. Figure 2(a) shows the experimentally obtained power spectra for a single depth in the sample, with Eq. (1) fitted (solid lines) for each glucose concentration. As seen, the fit is good throughout the studied concentration range. The derived results from the experimental fits of Fig. 2, as well as from additional glucose concentrations, are shown in Table 1 (top rows). Our determined viscosity value for pure water is \((0.904 \pm 0.008)\) mPa·s, which is within \(\sim 1\%\) of the accepted literature value at 23.8°C of \((0.914 \pm 0.0005)\) mPa·s\(^{49}\) (see Table 1), indicating high accuracy for our methodology in turbid water suspensions under no-flow conditions. Assessing the accuracy of the glucose results is more challenging, owing to the incomplete (and often conflicting, see discussion in Sec. 1) set of literature values for comparison. We thus used an interpolation method (explained in more detail below) to generate “literature values” at 23.8°C from the existing 20°C and 30°C literature data (Refs. 34 and 50, respectively). The resulting values are shown in the bottom row of Table 1. Comparing the top and bottom row entries across the measured glucose concentration range, we note an accuracy of \(\sim \pm 1\%\) in the no-flow colloidal glucose suspensions, except for the 1600 mM value which differs by \(\sim 2.5\%\).

In the no-flow case, the spectrum broadening is caused solely by the axial component of the random Doppler shifts produced by the jittering Brownian particles. Therefore, we would expect the \(HWHM_b\) of the measured Lorentzian power spectra to be independent of depth into the sample. Indeed, aside from some statistical variation, this independence of depth is shown in Fig. 2(b), which plots the \(HWHM_b\) values of the fitted Lorentzian as a function of depth across the capillary, with respect to the center of the capillary. Since the spectral width does not depend on the \(z\)-coordinate, the measured viscosity [calculated via Eq. (2)] also exhibits no depth dependence, as expected (mean values across depths are presented in Table 1).

4.2 Perpendicular Geometry Flow Case

For these experiments, the direction of flow was set perpendicular to the OCT sample arm beam axis, by minimizing the Doppler shift in the power spectrum (i.e., having the peak centered at \(f_D \rightarrow 0\)). The viscosity of each sample was determined by fitting an algorithm approximation\(^{45,47}\) of Eq. (3) to the measured power spectra and then using Eq. (2) to compute the viscosity for each depth. Figure 3(a) shows the experimentally obtained power spectra from the OCT voxel located at the center of the glass capillary, for different glucose concentrations. The lines in Fig. 3(a) are the fits of the algorithm approximation of Eq. (3) to the spectra, with both \(\tau_2\) and \(\tau_5\) as fitting parameters. As seen, Eq. (3) describes the data well across all measured glucose concentrations. The middle rows in Table 1 show the resulting numbers derived from these fits, averaged across all depths. Comparing to the top-row (no-flow) results, we note the consistency of our methodology in determining viscosity values under these two different experimental conditions. Comparing to the literature values bottom row, we note the technique’s accuracy for glucose viscosity determination under the perpendicular-flow conditions.

Figure 3(b) plots the Brownian motion contribution (\(HWHM_b\)) to the width of the fitted Voigt as a function of depth in the capillary; as expected, viscosity was independent of depth. Further, calculation of the flow speed \(v\) via Eq. (4) using the fitted \(\tau_2\) values as a function of depth showed good agreement with the theoretically expected parabolic flow profile (with \(<5\%\) RMS deviation from the expected flow profile over all depths, for each glucose concentration—data not shown). The good fits in the presence of flow, the depth independence of the results, and the close agreement with literature values all validate our recently proposed mathematical OCT DLS model.\(^{12,35}\)

4.3 Doppler Angle Flow Case

Having examined the special cases of no-flow and perpendicular-flow situations, we now move on to the most general case, with flow at an arbitrary (non-perpendicular) angle. Here, we must take into account the Doppler shifted peak centered at \(f_D\) due to the axial flow component. In OCT, we measure both the amplitude and phase of the scattered electric field. However, in our data analysis, we are using only the real part of the electric field sampled in time (purely, real function of time), the Fourier transform of which is Hermitian, resulting in a power spectrum that is symmetric about the \(f = 0\) baseband. Therefore, when performing the fitting, we need to include the peak shifted to the negative frequencies, and the fitting function in Eq. (3) becomes

\[
W_D(f) = W(f - f_D) + W(f + f_D),
\]

where \(W(f - f_D)\) is defined in Eq. (3), and \(W(f + f_D)\) is a “mirror” image peak that appears in the negative frequencies. This means that in the positive frequencies (ones with physical meaning) there is the dominant contribution from the Voigt peak.
Table 1
Brownian contributions to measured spectral widths $HWHM_b$ and corresponding viscosity and diffusivity values [via Eq. (2)] in stagnant and flowing suspensions of microspheres in water with varying amounts of dissolved glucose. All numbers following the ± symbols are the numerical values of the combined standard uncertainty.30

<table>
<thead>
<tr>
<th>Glucose concentration</th>
<th>mM</th>
<th>0</th>
<th>25</th>
<th>50</th>
<th>100</th>
<th>200</th>
<th>400</th>
<th>800</th>
<th>1600</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-refractive index</td>
<td></td>
<td>1.320</td>
<td>1.321</td>
<td>1.321</td>
<td>1.322</td>
<td>1.325</td>
<td>1.330</td>
<td>1.339</td>
<td>1.355</td>
</tr>
</tbody>
</table>

No-flow case

<table>
<thead>
<tr>
<th>$HWHM_b$ of fitted Lorentzian ± $u(HWHM_b)$</th>
<th>Hz</th>
<th>56.83 ± 0.03</th>
<th>56.21 ± 0.03</th>
<th>55.72 ± 0.03</th>
<th>54.49 ± 0.03</th>
<th>52.30 ± 0.03</th>
<th>47.95 ± 0.03</th>
<th>39.70 ± 0.02</th>
<th>25.67 ± 0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diffusivity ± $u_c(D)$</td>
<td>$\frac{D}{D_0}$</td>
<td>2.238 ± 0.005</td>
<td>2.213 ± 0.005</td>
<td>2.194 ± 0.005</td>
<td>2.145 ± 0.005</td>
<td>2.059 ± 0.005</td>
<td>1.888 ± 0.004</td>
<td>1.563 ± 0.004</td>
<td>1.011 ± 0.002</td>
</tr>
<tr>
<td>Viscosity ± $u_c(\eta)$</td>
<td>mPa · s</td>
<td>0.904 ± 0.008</td>
<td>0.914 ± 0.008</td>
<td>0.922 ± 0.008</td>
<td>0.942 ± 0.008</td>
<td>0.982 ± 0.008</td>
<td>1.071 ± 0.009</td>
<td>1.294 ± 0.011</td>
<td>2.001 ± 0.017</td>
</tr>
</tbody>
</table>

Perpendicular geometry flow case

Two-parameter fit: τ_b and τ_t were fit simultaneously via an algorithm approximation45,47 of Eq. (3)

<table>
<thead>
<tr>
<th>$HWHM_b$ of fitted Voigt ± $u(HWHM_b)$</th>
<th>Hz</th>
<th>56.6 ± 0.4</th>
<th>56.1 ± 0.3</th>
<th>56.1 ± 0.5</th>
<th>54.6 ± 0.2</th>
<th>53.1 ± 0.9</th>
<th>48.5 ± 0.6</th>
<th>40.7 ± 1.1</th>
<th>26.6 ± 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diffusivity ± $u_c(D)$</td>
<td>$\frac{D}{D_0}$</td>
<td>2.23 ± 0.01</td>
<td>2.21 ± 0.01</td>
<td>2.21 ± 0.02</td>
<td>2.15 ± 0.01</td>
<td>2.09 ± 0.04</td>
<td>1.91 ± 0.03</td>
<td>1.60 ± 0.05</td>
<td>1.05 ± 0.04</td>
</tr>
<tr>
<td>Viscosity ± $u_c(\eta)$</td>
<td>mPa · s</td>
<td>0.91 ± 0.01</td>
<td>0.92 ± 0.01</td>
<td>0.92 ± 0.01</td>
<td>0.94 ± 0.01</td>
<td>0.97 ± 0.02</td>
<td>1.06 ± 0.02</td>
<td>1.26 ± 0.04</td>
<td>1.93 ± 0.07</td>
</tr>
</tbody>
</table>

Doppler angle flow case ($\theta = 81^\circ$)

Three-parameter fit: τ_b, t_D, and τ_t were fit simultaneously via an algorithm approximation45,47 of Eq. (5)

<table>
<thead>
<tr>
<th>$HWHM_b$ of fitted Voigt ± $u(HWHM_b)$</th>
<th>Hz</th>
<th>57.1 ± 0.9</th>
<th>58.7 ± 3.3</th>
<th>54.6 ± 1.8</th>
<th>56.9 ± 3.2</th>
<th>56.6 ± 5.1</th>
<th>48.2 ± 0.8</th>
<th>39.4 ± 1.1</th>
<th>28.8 ± 3.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diffusivity ± $u_c(D)$</td>
<td>$\frac{D}{D_0}$</td>
<td>2.25 ± 0.04</td>
<td>2.31 ± 0.13</td>
<td>2.15 ± 0.07</td>
<td>2.24 ± 0.13</td>
<td>2.23 ± 0.20</td>
<td>1.90 ± 0.03</td>
<td>1.55 ± 0.04</td>
<td>1.13 ± 0.15</td>
</tr>
<tr>
<td>Viscosity ± $u_c(\eta)$</td>
<td>mPa · s</td>
<td>0.90 ± 0.02</td>
<td>0.87 ± 0.05</td>
<td>0.94 ± 0.03</td>
<td>0.90 ± 0.05</td>
<td>0.91 ± 0.08</td>
<td>1.06 ± 0.02</td>
<td>1.30 ± 0.04</td>
<td>1.78 ± 0.24</td>
</tr>
</tbody>
</table>

Existing literature values

<table>
<thead>
<tr>
<th>Literature viscosity values at 23.8°C</th>
<th>mPa · s</th>
<th>0.914</th>
<th>0.91</th>
<th>0.92</th>
<th>0.94</th>
<th>0.98</th>
<th>1.07</th>
<th>1.29</th>
<th>1.95</th>
</tr>
</thead>
</table>

a $u(HWHM_b) = \text{fitting uncertainty}$.

b $u(HWHM_b) = \sqrt{(\text{fitting uncertainty})^2 + (\eta_{\text{flow}} - \eta_{\text{no-flow}})^2}$.

c Reference 49.

d Literature values interpolated from 20°C (Ref. 34) and 30°C data (Ref. 50).
that was shifted to the positive frequencies but also a contribution from the tail of the “mirror” Voigt peak in the negative frequency space. This “mirror component” effect can be significant, especially when the Doppler shift is comparable to the width of the peak (results not shown for brevity but most pronounced for slow flows, voxel location close to capillary wall, or \(\theta \) close to 90°).

We now determine the viscosity of each phantom, starting by fitting Eq. (5) (via the algorithm approximation)\(^{45,47} \) to the spectrum data. The Doppler angle \(\theta \) chosen for the experiments was 81° in air. Figure 4 plots the experimentally obtained power spectrum from the voxel at the center of the glass capillary with the 0 mM data in Fig. 4(a) and the 100, 800, and 1600 mM glucose concentration.

Assuming a parabolic flow profile, we calculated \(v = 1.94 \text{ mm/s} \) at the center of the capillary, and the expected Doppler peak position for 0 mM glucose from the Doppler shift formula is \(f_D = \frac{2v\theta}{\lambda_0} = 518 \text{ Hz} \). This is in very close agreement with the best-fit peak position as shown in Fig. 4(a). Further, note that the positions of the Doppler peaks in Fig. 4(b) are not identical for the various glucose concentrations, for two reasons. First, the position of the Doppler peak depends on the glucose concentration through the refractive index, both directly (which depends on the Doppler angle in air and the refractive index of the suspending fluid) and indirectly through \(v \) (which depends on the Doppler angle in air and the refractive index of the suspending fluid). Second, the flow speeds in each of the experiments were likely not exactly the same: slight average flow speed variations do not significantly impact the measured width of the peak, and thus do not impact the measured viscosity values, yet the position of the peak in the frequency domain is very sensitive to these slight flow variations. Overall though, increasing glucose concentration narrows the spectral width of the peak, as expected from increasing viscosity which damps the Brownian motion of the scatterers; the fact that we can measure and quantify this effect even under angled-flow conditions is encouraging.

We also point out that for the angled flow case, even slight velocity gradients within the OCT measurement voxel will cause
artifacts. In fact, the only depth in the capillary where it was possible to accurately measure the viscosity was at its center position, where the velocity gradient of the parabolic flow profile was close to zero. For all other depths, the velocity gradient is enough to cause additional spectral broadening and thus yield inaccurate results. Within 40 μm from the center of the capillary, the velocity gradient causes a change in the Voigt spectral width (departure from theory) of up to 7%.

4.4 Measurement Uncertainty Analysis

Here, we briefly explain our uncertainty calculations. We can solve Eq. (2) for viscosity \(\eta = \frac{4k_BT_n}{\pi R w} \) and diffusivity \(D = \frac{2\lambda_{HWHM,\eta}}{8\pi} \), aside from the constant \(k_B \), each variable in the RHS of these equations has an associated “standard uncertainty, \(u' \)” (the standard deviation of the assumed probability distribution of the variable, either measured directly, provided by the manufacturer, or estimated). GUM details how to mathematically combine these individual standard uncertainties to produce the combined standard uncertainty, \(u_c \), on viscosity, \(u_c(\eta) \), and on diffusivity, \(u_c(D) \). By applying the GUM procedure, we assume that these individual components of uncertainty are statistically independent.

Table 1 presents a results summary. It lists the \(HWHM_b \) values and corresponding diffusivity and viscosity values for all three experimental conditions. For the first \(HWHM_b \) row (no-flow case), the numbers following the ± symbols are the numerical values of the standard uncertainty, \(u(HWHM_b) \), calculated directly from the confidence interval (from the MATLAB® fitting procedure) on the fitted parameter \(\tau_b \); thus, \(u(HWHM_b) \) is a measure of the quality of the fit of the Lorentzian to the data. The MATLAB® fitting procedure assumes that the fitted parameter \(\tau_b \) is a Gaussian random variable.

For the second and third \(HWHM_b \) rows (flow cases), the numbers following the ± symbols are the numerical values of the standard uncertainty \(u(HWHM_b) \), which we assume has two contributions: \(u(HWHM_b) = \sqrt{(\text{random component})^2 + (\text{biased component})^2} \). The first is the (random) fitting uncertainty on \(HWHM_b \) calculated directly from the confidence interval (from the MATLAB® fitting procedure) on the fitted parameter \(\tau_b \). The second is a non-random component (bias component), which we estimate as the difference between the measured \(HWHM_b \) values and the no-flow \(HWHM_b \) values: \(|\eta_{\text{perp-flow}} - \eta_{\text{no-flow}}| \) for the perpendicular-flow values and \(|\eta_{\text{angled-flow}} - \eta_{\text{no-flow}}| \) for the angled flow values.

For the no-flow and perpendicular-flow cases, the listed \(HWHM_b \) values are averages taken over depths within ~40 μm from the capillary center. For the \(\theta = 81^\circ \) experiment, only the data from the center of capillary location are listed. To calculate the combined standard uncertainties for diffusivity \(u_c(D) \) and viscosity \(u_c(\eta) \), for all three experimental conditions, the following values and their associated standard uncertainties were used: \(T = (23.8 \pm 0.2)^\circ \text{C}, \quad \lambda_0 = (1313.1 \pm 0.07) \text{ nm}, \quad n = 1.320 - 1.355 \pm 0.001 \text{ refractive index}, \quad R = (107.55 \pm 0.75) \text{ nm}, \) and with the \(u(HWHM_b) \) values described above. Although the following uncertainties are not used in our uncertainty calculations, we list them for completeness: \(w_0 = (11.5 \pm 0.2) \mu \text{m}, \) \(\theta = (81 \pm 1)^\circ \), and \(v = 0 - 1.94 \text{ mm/s} \) with a relative standard uncertainty of 1%. Despite the close agreement in the derived viscosity between the no-flow, perpendicular-flow, and Doppler angle flow cases, the no-flow data have a much smaller \(u_c(\eta) \). In fact, the (random) component of uncertainty for the \(HWHM_b \) due to the spectral fitting was very similar for all three experiments—the no-flow data fits [Lorentzian, Eq. (1)] and the flow data fits [Voigt, algorithm approximation for Eq. (3)]. The larger uncertainty values under flowing conditions arise from the bias component (discussed above), which is likely caused by some departure of the beam from a Gaussian profile due to spatial noise, and some fluctuations in the flow velocity. In the no-flow case, the main factor limiting the accuracy of viscosity measurements is the uncertainty on the particle radius. All other components contributing to the combined uncertainty (\(T, n, \lambda_0, \) and \(HWHM_b \)) are considerably smaller.

As an aside, we note that to produce the averaged spectrum with less fluctuations, it is important to have enough scatterers in the scattering volume, ~100 or more [we used ~5000 per voxel to get high signal to noise (S/N)]. With smaller numbers, the scattering becomes non-Gaussian, and the noise fluctuations in the measured signal (and resulting power spectrum) become considerably higher, which will lead to a larger contribution from the (random) fitting uncertainty.

4.5 Comparison with Literature

We begin this section with a brief comparison of our uncertainty values with those published in a previous OCT study,13 where the diffusivity of spherical Brownian particles in water was measured. First, under no-flow conditions and using a single parameter fit of \(\tau_b \), the standard uncertainty on the measurement of diffusivity in Ref. 13 is ~30% higher than the calculated standard uncertainty in this paper (see Table 1). Second, under perpendicular-flow conditions and using a two-parameter fit of \(\tau_0 \) and \(\tau_b \), the standard uncertainty on the measurement of diffusivity in Ref. 13 is ~3x higher than the calculated standard uncertainty in this paper.

Next, we compare our measured viscosity values with literature, and thus establish the technique’s accuracy. Since there are no reliable data in the literature for the viscosity of aqueous glucose solutions at our experimental temperature of 23.8°C, we used data sources at 20°C (Ref. 34) and at 30°C (Ref. 50), along with the following (slightly modified) empirical equation from Ref. 54 and also used in Ref. 32

\[
\eta(x) = \eta_0(1 + cx^2x),
\]

where \(\eta \) is the viscosity in mPa·s, \(\eta_0 \) is the viscosity of pure water at the chosen temperature, and \(x \) is the molality of the glucose solution. Equation (6) was fit to the literature data for 20°C (top dashed curve in Fig. 5) and for 30°C (bottom dashed-dot curve), with each fit producing a value for the fitted parameter \(c \). The solid middle line in Fig. 5 plots Eq. (6) using the value of \(c \) calculated by linearly interpolating (to 23.8°C) the fitted \(c \) values from the 20°C and 30°C data, and \(\eta_0 \) set to the viscosity of water at 23.8°C. All reported experimental viscosity results are also plotted as symbols in Fig. 5. These closely follow the solid line prediction and thus graphically demonstrate the good accuracy of the technique. The tight data spread at each glucose concentration also illustrates the good precision of the approach. The inset shows these two findings at the lower glucose concentration range of potential biomedical relevance.
We realize the simplicity of this assumption, since blood is much more complex than microspheres in aqueous glucose solutions.

The viscosity of turbid colloidal glucose solutions has been precisely and accurately determined from SD-OCT M-mode measurements and our recently developed OCT DLS model. Results for various glucose concentrations, flow speeds, and flow angles have been reported. The relative combined standard uncertainty \(u_c(\eta) \) of our viscosity results was \(\sim 1\% \) for the no-flow case and \(\sim 5\% \) for the flow cases, representing a considerable improvement over the uncertainty reported in the literature. Available literature data for pure water and our measurements differ by \(<1\% \) in the stagnant case and \(<1.5\% \) in the flow cases, demonstrating good accuracy. The good agreement held across the entire glucose measurement concentration range by comparison with interpolated literature predictions. Based on the presented uncertainty analysis, our OCT power-spectrum-based approach, with its demonstrated good accuracy and low uncertainty, may contribute toward eventual noninvasive glucose measurements in medicine.

Disclosures

The authors have no competing interests to declare.

Acknowledgments

The authors thank Dr. Kostadinka Bizheva (University of Waterloo) for her help with the Fourier domain OCT system. This study was supported by the Canadian Institutes of Health Research (Grant No. 126172), the Ministry of Education and
Science of the Russian Federation (Grant No. 14.B25.31.0015), and the Natural Sciences and Engineering Research Council of Canada/Canadian Institutes of Health Research through the Collaborative Health Research Program (CHRP Grant No. J365581-09).

References

39. From the acceptance test report (data sheet) for the light source SU1024LDH-1.7, UTC Aerospace Systems.
42. Bangs laboratories data sheet for 215.1 nm diameter polystyrene microspheres.
Andrew Weatherbee is a MSc candidate in the Department of Medical Biophysics, the University of Toronto. He completed his honors BSc degree in physics from Western University. His research experience covers data analysis and processing using MATLAB® and LabVIEW, meteor tracking and detection using infrasonic microphones and radar antennas, and microfabrication of small particles using photolithography. His current research focuses on practical applications of dynamic light scattering techniques under optical coherence tomography conditions.

Ivan Popov received his master’s degree in radio physics and his PhD in optics from St. Petersburg State University, Russia, in 1972 and 1979, respectively, and his DSc degree in optics from the Institute of Fine Mechanics and Optics, St. Petersburg, Russia, in 2000. His area of expertise includes optics of speckles, noncontact techniques of motion measurement, and biomedical applications of optical coherence domain techniques. He is currently with the Biophotonics Group, University Health Network, Toronto, Canada.

Alex Vitkin is a professor of medical biophysics and radiation oncology at the University of Toronto, a senior scientist at University Health Network, and a board-certified clinical medical physicist at Princess Margaret Cancer Centre (all in Toronto, Canada). He has published more than 170 papers and book chapters on biophotonics. He is also a topical editor of *Optics Letters*, a fellow of OSA and SPIE, and a visiting professor at the Nizhny Novgorod State Medical Academy, Russia.