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Abstract. Previous research correcting for variable speed of sound in
photoacoustic tomography �PAT� based on a generalized radon trans-
form �GRT� model assumes first-order geometrical acoustics �GA� ap-
proximation. In the GRT model, the pressure is related to the optical
absorption, in an acoustically inhomogeneous medium, through inte-
gration over nonspherical isochronous surfaces. Previous research
based on the GRT model assumes that the path taken by acoustic rays
is linear and neglects amplitude perturbations to the measured pres-
sure. We have derived a higher-order GA expression that takes into
account the first-order effect in the amplitude of the measured signal
and higher-order perturbation to the travel times. The higher-order
perturbation to travel time incorporates the effect of ray bending. In-
correct travel times can lead to image distortion and blurring. These
corrections are expected to impact image quality and quantitative
PAT. We have previously shown that travel-time corrections in 2-D
suggest that perceivable differences in the isochronous surfaces can
be seen when the second-order travel-time perturbations are taken
into account with a 10% speed-of-sound variation. In this work, we
develop iterative image reconstruction algorithms that incorporate this
higher-order GA approximation assuming that the speed of sound map
is known. We evaluate the effect of higher-order GA approximation
on image quality and accuracy. © 2010 Society of Photo-Optical Instrumentation
Engineers. �DOI: 10.1117/1.3333550�
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Introduction
ptoacoustic imaging is a hybrid imaging technique that has

ttracted a lot of attention in recent years. It is based on the
hermoacoustic effect, which refers to acoustic wave genera-
ion on absorption of pulsed optical energy by a medium. A
light rise in temperature of the medium due to the absorption
f the incident electromagnetic wave results in thermoelastic
xpansion. This thermoelastic expansion and then contraction
ue to the pulsed electromagnetic waves leads to the genera-
ion of acoustic waves. Under the constraints of thermal and
tress confinement, this thermal expansion leads to a rise in
ressure, p�r , t�, that satisfies the three-dimensional inhomo-
eneous wave equation1

�2p�r,t�
�t2 − c�r�2�2p�r,t� =

�

Cp

�

�t
H�r,t� , �1�

here c�r� is the speed of sound; H�r , t�, the heating func-
ion, is the thermal energy deposited by the electromagnetic
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artment of Radiology, 5841 South Maryland Avenue, Chicago, Illinois 60637.
el: 773-834-9051; Fax: 773-702-3766. E-mail: dimple@uchicago.edu
ournal of Biomedical Optics 021308-
radiation per unit time per unit volume; � is the isobaric vol-
ume expansion coefficient; and Cp is the specific heat of the
medium. The heating function can be expressed as the product
of a spatially varying absorbed optical energy, A�r�, and a
time-dependent optical illumination function, I�t�. If the speed
of sound is constant, c�r�=c, the measured pressure signal
can be related to the optical absorption function, assuming
delta pulse illumination, as

p�r,t� = �� d3r�A�r��
�

�t

��t − ��r − r��/c��
4��r − r��

, �2�

where ��� /Cp. Equation �2� states that the time integral of
acoustic pressure at a point r and time t is given by the inte-
gral of the optical absorption function over a spherical surface
of radius �r−r��=ct centered at r. A simple but inexact way to
reconstruct A�r� is to spatially resolve the optoacoustic waves
and to backproject time-integrated pressure signals over hemi-
spheres of radii ct.

1083-3668/2010/15�2�/021308/9/$25.00 © 2010 SPIE
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However, the speed of sound in tissues can vary from
350 m /s �in fat� to about 1700 m /s �for skin� for ultrasound
aves in the 1–10 MHz range.2 Using a constant speed of

ound in image reconstruction can result in image distortion
nd poor image quality. There has been some work done pre-
iously to address the effect of speed-of-sound variations in
ptoacoustic tomography �OAT�. Xu3 and Xu and Wang4

ooked at variable speed-of-sound reconstruction in breast
hermoacoustic tomography �TAT�. They concluded that there
s minor amplitude distortion in breast TAT and that variation
n travel time is typically a first-order perturbation in a weakly
coustically heterogeneous medium. Zhang and Anastasio5

erived a heuristic method for reconstructing acoustic speed
nd optical absorption distributions in a stepwise manner.
heir work was also based on the first-order travel-time ef-

ect. Kolkman et al.6 devised a method to determine the speed
f sound in tissue using two concentric ring-based photoa-
oustic sensors based on the first-order travel-time effect.
anohar et al.7 also devised a new and improved method to

etermine the speed of sound using a photoacoustic imager.
hus, overall previous work on the speed-of-sound variation

hat is based on the generalized radon transform �GRT� model
as only looked at the first-order effect of variable speed of
ound.4–6 In the GRT model, the pressure is given by

p�r,t� = �� d3r�A�r��
�

�t

��t − ��r,r���
4��r − r��

, �3�

here ��r ,r�� is the travel time for the sound wave to travel
etween points r and r�. In the first-order models, it was
ssumed that sound rays continue to travel in a straight line in
he presence of the acoustic heterogeneity and the travel time
etween points r and r� is given as a line integral over the
lowness map

��r,r�� � �1�r,r���
r0

ds/c�s� , �4�

here r0 is the straight line joining the points r and r�, ds is
he differential length element along that line, and c�s� is the
ariable speed of sound. The effect of variable speed of sound
n signal amplitude was neglected. Previous work based on
he first-order GRT model does not incorporate the effect of
ay bending, which may be significant when the speed of
ound varies by 10% or more.

There are some other approaches that make less restrictive
ssumptions about the speed of sound, although they usually
equire the assumption of a closed detector surface, which is
ot always achievable in practice. Agranovsky and
uchment8 have recently derived an analytic reconstruction

ormula for OAT for arbitrary detector geometry, as long as
he point detectors are placed on a closed surface. It accom-

odates a variable speed of sound. Their analytic formula
eads to reconstruction in terms of an eigenfunction expan-
ion. Zhen and Jiang9 devised an iterative reconstruction al-
orithm, using a finite element method that incorporates both
ttenuation and variable speed of sound. Recently, Hristova et
l.10 have used the time-reversal method to incorporate vari-
ble speed of sound in optoacoustic image reconstruction.
heir method is exact and performs well when the speed-of-
ournal of Biomedical Optics 021308-
sound map is known. However, it has the usual limitations of
the time-reversal algorithm that the detection surface needs to
be a closed surface, enclosing the object to avoid artifacts due
to incomplete data.

In this work, we investigate a higher-order geometrical
acoustic approximation that incorporates a first-order effect on
the signal amplitude and higher-order effects on the travel
times. We use this higher-order approximation to construct the
system matrix. We then iteratively reconstruct the images us-
ing third-, second-, first-, and zeroth-order travel-time effects.
We show that the higher-order GA approximation offers much
better image quality and accuracy when the speed of sound
varies by 5% or more.

2 Methods
We treat the variation in the speed of sound as a perturbation
to the uniform background sound speed, c0,

c�r� = c0 + �c1�r� , �5�

where � characterizes the magnitude of the perturbation.
We denote the unperturbed Green’s function by G0. It sat-

isfies the background homogeneous Helmholtz equation

	�2 +
�2

c0
2 
G0�r,r�,�� = − ��r − r�� . �6�

The Green’s function that satisfies the perturbed inhomo-
geneous Helmholtz equation is given by G�r ,r� ,��

	�2 +
�2

c2�r�
G�r,r�,�� = − ��r − r�� . �7�

2.1 Derivation of GA Approximation
The GA approximation ignores diffraction effects. It is valid
in the short wavelength regime when the size of the inhomo-
geneity is much greater than the wavelength. In a scattering
medium, this approximation is valid when the speed of sound
does not change significantly over one wavelength. Under this
approximation, the Green’s function G�r ,r�� can be written
as

G�r,r�,�� = 	g0 +
g1

ik
+

g2

�ik�2 + ¯ 
exp�i���r,r��� , �8�

where k�2� /� is the wave number.
This can be written in the zeroth-order approximation in

wavelength � as

G�r,r�,�� = g0�r,r��exp�i���r,r��� , �9�

where � is known as the eikonal function. On substituting this
into Eq. �7� and equating equal powers in k we get in the limit
�→0

O�k2� ��r��r,r���2 = c−2�r� , �10�

O�k1� 2� � · � g + g �2� = 0, �11�
r r 0 0 r

March/April 2010 � Vol. 15�2�2



w
p
n
T
t
t
n
S
b
r
v

�

t

w
m

Modgil, Anastasio, and La Rivière: Image reconstruction in photoacoustic tomography with variable speed of sound…

J

O�k0� �r
2g0�r,r�� = − ��r − r�� . �12�

Equation �10� is called the eikonal equation, and it implies

��r,r�� =�
r�

r

ds/c�s� , �13�

here s denotes the arc length along the path between the
oints r and r� as shown in Fig. 1. Note that the curve con-
ecting the points r and r� is not, in general, a straight line.
he ray trajectory is determined by the path that minimizes

he acoustic path length �Fermat’s principle� or equivalently,
hat minimizes the travel time. For an acoustically homoge-
eous medium, this is a straight line. Previous work by
nieder and Aldridge11 concludes that to first order in pertur-
ation, this trajectory can be chosen to be the path along the
eference ray that satisfies the eikonal equation �assuming the
ariation in speed of sound is slowly varying�.

Using standard Green’s function techniques12,13 and Eq.
9�, the pressure is given by

p�r,�� � − i��� d3r�A�r��g0�r,r��exp�i���r,r��� .

�14�

Taking the Fourier transform with respect to �, we obtain
he generalized radon transform �GRT�

p�r,t� � �� d3r�A�r��g0�r,r��
d

dt
��t − ��r,r��� . �15�

Equation �11� can be solved to obtain

g0�r,r�� = C exp	−
1

2
�

r�

r

c�s���2��ds
 , �16�

here C is the constant of integration. Because this equation
ust also be satisfied if c�s�=c0, we get

C =
1

4��r − r��
. �17�

Equation �16� can be solved to obtain14

g0�r,r�� =
1

4��r − r��
� c�r�

c�r��
. �18�

r

t
ds

r’

Fig. 1 Path traveled by sound wave between points r and r�.
ournal of Biomedical Optics 021308-
2.2 Higher-Order Geometrical Acoustics
Approximation

We can thus improve the first-order GA model that has been
used previously by incorporating higher-order effects on the
amplitude and travel times. We can use Eq. �18� for the am-
plitude of the Green’s function. We can incorporate the effect
of ray bending by considering the higher-order perturbations
in the eikonal. The assumption for first-order GA is that the
speed of sound is slowly varying so that the time of travel can
be obtained using linear rays. However, if this assumption is
not true, it can lead to higher-order perturbations in travel
times. Higher-order travel-time perturbations contribute to ray
bending. The ray bends toward the region that has a higher
refractive index �or lower speed of sound�. Assume that the
reference speed of sound c0 is perturbed as given by Eq. �5�.

Following the methodology of Snieder and Aldridge,11 this
leads to a perturbation in travel time as

��r,r�� = �0�r,r�� + ��1�r,r�� + �2�2�r,r�� + ¯ . �19�

Let r0 denote the reference ray associated with the refer-
ence eikonal �0�r ,r��. Let the reference ray be parametrized
by the variable s so that r0=st̂0, where t̂0 is the unit vector
along the reference ray. If we substitute for ��r ,r�� and c�r�
in the eikonal equation and collect terms with equal powers of
the perturbation � and solve, we get

�0�r,r�� =�
r0

ds/c0, �20�

�1�r,r�� = −�
r0

c1�s�
c0

2 ds , �21�

and

�2�r,r�� =�
r0

c0

2

 c1

2�s�
c0

4 − ���1�r,r���2�ds . �22�

Thus, one can calculate the perturbed time of flight using
these equations if one knows the reference ray. Note that this
perturbation theory approach only works if the nonlinear per-
turbations are small and there is no multipathing.11 Thus, we
can obtain a higher-order estimate of the pressure than that
given by Eq. �24� by using Eq. �18� for amplitude and Eq.
�19� and keeping up to second-order terms in Eq. �15�. One
can obtain even higher-order perturbations to travel times as
described by Snieder and Aldridge11 These effects are ex-
pected to be smaller than the second-order travel-time effects.
The equations for third- and fourth-order effects are given in
the Appendix.

As an aside, note that if we keep only the zeroth-order
term in c�r�, we get from Eq. �18�

g0�r,r�� =
1

4��r − r��
. �23�

Using this expression for g0�r ,r�� in Eq. �15�, we will
obtain the following expression for pressure:
March/April 2010 � Vol. 15�2�3
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p�r,t� � �� d3r�
A�r��

4��r − r��
d

dt
��t − ��r,r��� . �24�

This expression along with the first-order travel time given
y Eq. �4� is what has been used implicitly in the previous
ork addressing speed-of-sound variation based on the GRT
odel.

.3 Limits of GA Approximation

.3.1 Requirement for validity of GA
he GA approximation is valid under certain assumptions
bout the rate of variation of the speed of sound and the size
f acoustic inhomogeneity. It requires that the scale of varia-
ion of the speed of sound should be much greater than the
coustic wavelength.

Let the speed of sound be given by

c�r� = c0 + ��r� �25�

=c0�1 + 	�r�� , �26�

here 	�r����r� /c0.
GA requires that14

2�
����r��

c0

 1. �27�

This implies that

2���	�r�� 
 1. �28�

If L denotes the scale of variation of speed of sound, then
his implies that

	 

L

2�
.

For a typical ultrasound wavelength of �=0.3 mm, this
imit implies

	 
 1.667L mm−1. �29�

For a 10% variation, i.e., 	=0.1, we get

L � 0.0599 mm. �30�

.3.2 Regime where ray bending may become
important

n the GRT model, the travel times are used to determine
here the optoacoustic signal at a certain transducer position

t a certain time t came from. If the travel times calculated
sing the higher-order GA approximation differ from those
alculated using the first-order approximation by greater than
he temporal sampling interval, then this would lead to incor-
ect calculation of A�r�. Second-order travel-time effects in-
orporate the leading effect of ray bending. Thus, ray bending
ecomes important if the second-order correction to the travel
ime is of the order of the temporal sampling interval �t. This
mplies that
ournal of Biomedical Optics 021308-
�2 � O��t� . �31�

But, Eq. �22� for �2 implies that

�2 � O	 c2

2

c1
2

c0
4 l
 , �32�

where l is the length of the inhomogeneous region.
This implies that, in order for the second-order effect to be

significant, we must have

	2l � 2��t�c0 �33�

and for �t=10 ns, c0=1.5e5 cm /s, Eq. �33� implies that

	2l � 0.03 mm, �34�

and for a 10% variation �i.e., 	=0.1�, we get

l � 3 mm. �35�

Thus, even a 3-mm inclusion of 10% variation above the
background speed of sound could cause ray bending to be
significant.

2.4 Computer-Simulation Studies
We performed simulations to study the effect of the higher-
order GA approximation on travel times and the resulting re-
constructed images. We wanted to validate that our perturba-
tive approach to travel-time calculation matches the
analytically computed travel times for a given speed of sound
map. We explored some speed-of-sound maps where ray
bending may become important. We wanted to study the ef-
fect of ray bending on the computed travel times and the
resultant reconstructed images.

We computed the travel times in 2-D for two different
speed-of-sound maps, which are shown in Fig. 2. The first
speed-of-sound map is a continuous, slowly varying region as
shown in Fig. 2�a�. The speed of sound in this case is given by

c�r� = c0	1 +
r2

a2
 , �36�

where a is a constant that controls the variation in speed of
sound. The travel times for this speed-of-sound map can be
calculated analytically as described in Ref. 15. We wanted to
see how the perturbed travel times compare to the analytical
travel times for this slowly varying speed-of-sound map.

The second speed-of-sound map contains an elliptical

Fig. 2 Speed-of-sound maps and the original phantom used for the
simulations: Slowly varying circular speed-of-sound map, elliptical
speed-of-sound map, and phantom object representing absorbed op-
tical energy
March/April 2010 � Vol. 15�2�4
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coustic inhomogeneity as shown in Fig. 2�b�, which may be
ore common clinically. The blurred elliptical region

2
1.4 mm� in this map has the variable speed of sound
ith respect to the background. The background speed of

ound was set to 1500 m /s. We were not able to compute the
ravel times analytically in this case for comparison.

The travel times were computed assuming that the trans-
ucers are placed on a line to the left of the phantom. These
ravel times were calculated using the higher-order GA ap-
roximation in 2-D using the Eqs. �20�–�22�, �44�, and �45�.
he reference ray path was assumed to be a straight line. The

ine integrals over the reference ray path were evaluated nu-
erically.

.4.1 Travel-time calculations
ravel times were calculated using up to fourth-order correc-

ion for different pixels for a specific transducer position. This
as done in 2-D for a 50
50 grid for the two specific speed-
f-sound maps as shown in Fig. 2. The travel times were
alculated for a 5, 10, and 15% speed-of-sound variation. The
ixel size was set to 0.01 cm. The time-sampling interval was
et to 33.33 ns. The transducers were assumed to lie on a line
z=0, x�0� to the left of the phantom, 0.01 cm apart.

.4.2 Image reconstruction
he images were then reconstructed iteratively using the

east-squares �LS� method and conjugate gradient method. It-
rative methods require the computation of system matrices.
he PAT reconstruction problem can be written as16

g = Hf , �37�

here g is the time-integrated pressure data, f is the object
unction that represents the absorbed optical energy distribu-
ion, and H is the system matrix. The function g is defined as

g�x,t� �
4�

�c0
�

0

t

p�x,t��dt�.

We consider the 2-D geometry where the inherently 3-D
AT problem is reduced to 2-D due to the transducer’s direc-

ivity. In this case,17 for a transducer along the line z=0, using
he higher-order GA approximation, g�x , t� can be written as
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g�x,z = 0,t� =� � dx�dz�A�x�,z��� c�x,0�
c�x�,z��


��t − ��x,x�,z���
c0t

��x − x��2 + z�2
. �38�

The system matrix H is computed by calculating the con-
tribution of pressure signal from each pixel for a given time
and transducer position. The contribution from each pixel is
calculated on the basis of travel time from that pixel to a
given transducer position. The system matrices were con-
structed in 2-D incorporating zeroth, first-, second-, third-,
and fourth-order travel-time effects. The fourth-order travel-
time system matrix was used for the forward model using the
phantom in Fig. 2�c�. The LS method minimizes the differ-
ence between the observed data and that obtained by project-
ing the object data via the system matrix. This can be written
symbolically as16

f̂ = argmin�g − Hf�2. �39�

Equation �39� has the solution

f̂ = H+g , �40�

where H+ is the pseudo-inverse of H. The iterative LS method
is based on the following additive update formula:16

f̂ �n+1� = f̂ �n� + ��f �n�, �41�

where f̂ is the object estimate, n is the iteration number, � is
the step size, and �f is the step direction. The conjugate gra-
dient method was used to find the new step direction. In this
algorithm, the step directions are chosen so that they are con-
jugate to each other. This method, as outlined in Chapter 21 of
Ref. 16, was used by us to perform the iterative reconstruc-
tion.

The images were then reconstructed iteratively using
third-, second-, first-, and zeroth-order matrices. The image
reconstruction was done on a 50
50 grid with parameters as
specified above. Noisy data were generated by adding Gauss-
ian noise that was 1% of the maximum value of the noiseless
fourth-order generated forward data.
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Results
he results below are for the specific speed-of-sound maps as
hown in Figs. 2�a� and 2�b�. The speed of sound in the ellipse
aries with respect to the background. The line of transducers
s placed to the left of the phantom along the line x=0. Some
f these results related to the elliptical speed-of-sound map
re slightly different from those in Ref. 18. This is due to
ome minor improvements in the implementation of the
ravel-time calculations related to how accurately the slow-
ess map is integrated over the line joining the two points.

.1 Relative Travel Times
n order to compare the calculated travel times with actual
ata, we used a speed-of-sound map that would allow for an
nalytical calculation of travel times. We specifically looked
t the speed-of-sound map shown in Fig. 2�a�. The relative
ravel times were calculated using

�relative,order =
��analytical − �order�

�analytical
, �42�

here �order refers to a specific-order perturbative travel time
nd �analytical is the analytically calculated travel time.

The relative travel times for the transducer at �0,2.3 mm�
or phantom pixels along the line �4.5 mm,0� are shown in
ig. 3.

From Fig. 3, we can see that even though the relative
ravel-time differences are small between the perturbed times
nd the analytical times, the second-order and higher travel
imes agree much more closely with the analytical times than
he first-order travel time. We also observe that the higher-
rder travel times converge to the second-order travel times.

Figure 4 depicts the change to relative travel times for
ixels located along the line �0,1.0 mm� with the transducer
laced at �0,2.3 mm� in pixel coordinates for the speed-of-
ound map shown in Fig. 2�b�. The relative travel times were
alculated using

�relative,order =
��0 − �order�

�0
, �43�

here �order refers to a specific-order perturbative travel time
nd � is the zeroth-order travel time. One observes that the
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higher-order travel-time corrections become perceivable when
the speed of sound varies by 10% or more. One can also see
that the travel-time perturbations seem to converge when one
goes up to the fourth-order term. This suggests that one
should use up to fourth-order travel-time corrections in the
forward model to most accurately represent the signal.

3.2 Iteratively Reconstructed Images
Iterative image reconstruction was performed using both the
speed-of-sound maps. Because the variation in speed of sound
is so gradual in the circularly varying speed-of-sound map, no
perceivable differences in iteratively reconstructed images
could be seen between using first- and second-order system
matrices. The results reported here are for the elliptical speed-
of-sound map. Each group of reconstructed images use the
same gray scale.
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Fig. 5 Iteratively reconstructed images using fourth-order travel-time
correction in the forward model with a 0, 1, 5, and 10% speed-of-
sound variation. Images were reconstructed using various-order
travel-time corrections.
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.2.1 Noiseless data
igure 5 shows the iteratively reconstructed, noiseless images

ncorporating up to third-, second-, first-, and zeroth-order
ravel-time effects for the elliptical speed-of-sound map. The
oot-mean-square �rms� error in the reconstructed image in-
ensities is given in Table 1.

For a 1% speed-of-sound variation, there is almost no dif-
erence in images reconstructed using first-order correction
nd higher-order corrections. For a 5% speed-of-sound varia-
ion, the rms error in the reconstructed images are about three
imes smaller for higher-order reconstructions than the first-
rder one. For a 10% speed-of-sound variation, the images
econstructed using higher-order corrections have about a five
ime smaller rms error than that using the first-order one.

Figure 6 shows a line profile through the noiseless, recon-
tructed images at �0,2.0 mm�. One can see that the differ-
nce between higher and first-order approaches is not large for
5% speed-of-sound variation. However, the difference is
ore significant for a 10% speed-of-sound variation, espe-

ially for objects lying behind the inhomogeneity.

.2.2 Noisy data
igure 7 shows the iteratively reconstructed, noisy images

ncorporating up to third-, second-, first-, and zeroth-order
ravel-time effects for the elliptical speed-of-sound map. Fig-
re 8 shows a line profile through the noisy reconstructed

Table 1 rms error in noiseless reconstructed images.

Speed of
ound variation

�%� Third-order Second-order First-order Zeroth-order

0 0.07202 0.07202 0.07202 0.07375

1 0.07207 0.07207 0.08195 0.25713

5 0.07514 0.07516 0.2343 0.69133

10 0.10248 0.10353 0.52213 0.74761
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Fig. 6 Line profile through the phantom at �0
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images at �0,2.0 mm�. One can see that the difference be-
tween higher- and first-order approaches is again small for a
5% speed-of-sound variation. However, the difference is more
significant for a 10% speed-of-sound variation especially for
objects lying behind the inhomogeneity.

3.2.3 Incorrect speed-of-sound map
To study the effect of an incorrect speed-of-sound map on
higher-order GA approximation, we constructed the simulated
data using the elliptical speed-of-sound map with 5.33%
variation in speed of sound using the fourth-order correction.
Images were iteratively reconstructing using third- and lower-
order corrections assuming that the speed of variation was
only 5%. Figures 9 and 10 show the reconstructed images
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Fig. 7 Iteratively reconstructed images using fourth-order travel-time
correction with noise in the forward model with a 0, 1, 5, and 10%
speed-of-sound variation. Images were reconstructed using various-
order travel-time corrections.
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sing noiseless and noisy data, respectively. Table 2 lists the
ms error in the reconstructed images using noiseless data.

In this case, the higher-order approaches still give slightly
etter reconstructed images when compared to the first-order
pproach. However, the residual artifacts in the higher-order
orrections suggest that the approach is sensitive to the accu-
acy of the speed-of-sound map.

Discussion
he higher-order GA approximation offers better results than
first-order one for a realistic speed-of-sound map that has no

harp edges with a maximum variation of �10%. This
ethod is of course approximate and assumes that the speed-

f-sound map is known. This method is sensitive to the accu-
ate knowledge of the speed-of-sound map both in terms of
he magnitude and the location of acoustic heterogeneity. It
owever does not make any assumptions about the transducer
eometry. There will be certain speed-of-sound maps in prac-
ice that may result in shadow regions or caustic regions or
egions where the rays get trapped. In these cases, one will
ot be able to correctly calculate the travel time. However,
hese regions will also be a problem for the GRT model using
he first-order GA approximation. Hristova et al.10 have re-
ently presented an application of the time-reversal algorithm
o solving the photoacoustic image reconstruction problem
ith variable speed of sound. This is an exact approach and
ffers promising results but requires the detector surface to
nclose the object in order to reconstruct images free from

ig. 9 Images reconstructed using incorrect speed of sound map with
-axis.
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Fig. 8 Line profile through the phantom at
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artifacts. Our higher-order GA approach could be used in
those practical scenarios when the detector surface is a plane
or does not completely enclose the object. It would also be
useful for modeling variable speed of sound in iterative image
reconstruction algorithms that are trying to model other physi-
cal factors as well in OAT.

Even though our simulations were performed in 2-D, these
results should also be valid in 3-D. This is because we re-
duced the 3-D problem to 2-D using the 2-D directivity of the
transducer, which means that the acoustic propagation is still
modeled by the 3-D wave equation. We just assumed the
transducer is insensitive to out-of-plane waves. In this case,
the isochronous, perturbed spherical surfaces become isochro-
nous, perturbed circles in 2-D.

5 Conclusions
We derived a higher-order geometrical acoustics approxima-
tion to the GRT model in PAT. This incorporates the first-
order correction to the pressure amplitude and higher-order
correction to the travel times. We found that some differences
can be seen in the travel times between higher- and first-order
corrections when the speed of sound varies by 5% or more.
These differences in travel times translated into the recon-
structed images as well. Images that were iteratively recon-
structed using the higher-order corrections were more accu-
rate than those constructed using the first-order corrections.
Similar results were obtained using noisy data, although the
results were much better for the noiseless data. However, the

ess data with the transducer placed to the left of the object along the
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ifferences between first- and higher-order models were not as
ronounced when using an incorrect speed-of-sound map with
6% uncertainty in the magnitude of the acoustic inhomoge-

eity. We will conduct further studies using actual pressure
ata in an inhomogeneous medium in 3-D to quantify the
ffect of this higher-order GA approximation.

ppendix: Third- and Fourth-Order Travel-Time
orrections
hese results are based on the derivation of Snieder and
ldridge.11 The third-order travel-time correction is given by

�3�r,r�� = − c0�
r0

���2�r,r�� · ��1�r,r���ds . �44�

he fourth-order travel time is given by

�4�r,r�� = − c0�
r0


��1�r,r�� · ��3�r,r�� +
1

2
���2�r,r���2�ds ,

�45�

here �3 and �4 are the third-and fourth-order travel times.
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