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Abstract. This is the first part of a two-part paper on the application of computer-aided diagnosis to diffuse optical
tomography (DOT). An approach for extracting heuristic features from DOT images and a method for using these
features to diagnose rheumatoid arthritis (RA) are presented. Feature extraction is the focus of Part 1, while the utility
of five classification algorithms is evaluated in Part 2. The framework is validated on a set of 219 DOT images of
proximal interphalangeal (PIP) joints. Overall, 594 features are extracted from the absorption and scattering images
of each joint. Three major findings are deduced. First, DOT images of subjects with RA are statistically different
(p < 0.05) from images of subjects without RA for over 90% of the features investigated. Second, DOT images of
subjects with RA that do not have detectable effusion, erosion, or synovitis (as determined by MRI and ultrasound)
are statistically indistinguishable from DOT images of subjects with RA that do exhibit effusion, erosion, or syn-
ovitis. Thus, this subset of subjects may be diagnosed with RA from DOT images while they would go undetected by
reviews of MRI or ultrasound images. Third, scattering coefficient images yield better one-dimensional classifiers. A
total of three features yield a Youden index greater than 0.8. These findings suggest that DOT may be capable of
distinguishing between PIP joints that are healthy and those affected by RA with or without effusion, erosion, or
Synovitis. © 2013 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.18.7.076001]
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1 Introduction

1.1 Overview

Over the last decade, the field of diffuse optical tomography
(DOT) has progressed from purely theoretical studies and bench-
top experiments to clinical trials that explore the utility of DOT in
the diagnosis of breast cancer,' brain imaging,” and the detection
of rheumatoid arthritis (RA).> While substantial advances have
been made in building clinically useful instruments and develop-
ing image reconstruction algorithms, much less effort has been
spent on developing image analysis tools that can aid in quantify-
ing or detecting the presence of diseased tissue.

In this 2-part paper, we introduce a general approach to com-
puter-aided diagnosis (CAD) for DOT. We apply this approach
to images of finger proximal interphalangeal (PIP) joints
obtained from 20 healthy volunteers and 33 subjects with
RA.? In Part 1, we establish a framework for extracting features
of interest from three-dimensional (3-D) DOT images. The stat-
istical significance of each feature is evaluated with classical
statistical methods, including Kruskal-Wallis analysis of
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variance (ANOVA), Dunn’s test, and receiver—operator-charac-
teristics (ROC) analysis. The intra-class correlation coefficient
(ICC) is used to compute the effective sample size (ESS) of our
data, which in turn is used to adjust our results for any bias that
may be introduced by treating each imaged finger as an inde-
pendent sample. This step is necessary as we imaged multiple
fingers per subject. Through this analysis we establish which
individual features are best indicators of RA in terms of diag-
nostic sensitivity (Se) and specificity (Sp). Links between these
best features and physiological processes are identified.

In Part 2, (Ref. 4) we combine multiple individual features
from Part 1 to form multidimensional feature vectors. The vec-
tors are used as input to five different classification algorithms: k
nearest neighbors (k-NN), linear discriminate analysis (LDA),
quadratic discriminate analysis (QDA), support vector machines
(SVM), and self-organizing maps (SOM). Algorithm perfor-
mance is compared in terms of Se and Sp. For each algorithm
we determine the set of features that best differentiates between
PIP joints with RA and without RA.

1.2 Background

The development of CAD tools has been a subject of intense
research across many areas of medical imaging and image
analysis.>® Often used to enhance the natural contrast between

0091-3286/2013/$25.00 © 2013 SPIE

July 2013 « Vol. 18(7)


http://dx.doi.org/10.1117/1.JBO.18.7.076001
http://dx.doi.org/10.1117/1.JBO.18.7.076001
http://dx.doi.org/10.1117/1.JBO.18.7.076001
http://dx.doi.org/10.1117/1.JBO.18.7.076001
http://dx.doi.org/10.1117/1.JBO.18.7.076001
http://dx.doi.org/10.1117/1.JBO.18.7.076001

Montejo et al.: Computer-aided diagnosis of rheumatoid arthritis with optical tomography...

healthy and diseased tissue, CAD tools have been shown to
enhance the diagnostic value of various imaging modalities. Its
use in detection and characterization of lesions has been
expanded to almost all imaging modalities, including X-ray com-
puted tomography (CT), ultrasound, and magnetic resonance im-
aging (MRI).”"'° The medical applications that have seen the most
activity in CAD research are X-ray imaging of the breast, chest,
colon, brain, liver, and the skeletal and vascular systems.’

CAD tools have been particularly successful in enhancing
the reading of mammograms. For example, Doi reported that
the early detection of breast cancer from mammograms
improved by up to 20% when CAD tools were used to aid
the diagnostic process.” In another study, LDA and Bayesian
Neural Networks (BNN) were employed to investigate the
repeatability of CAD based diagnosis of malignant breast
lesions with sonography. The best sensitivities and specificities,
based on repeatability, were 90% and 66% with BNN, and 74%
and 84% with LDA,"! respectively.

Similar results have been obtained with MRI data from breast
cancer patients. Backpropagation neural networks have been
employed for detection of breast tumors,’ artificial neural net-
works have been used to differentiate between breast MRI images
of malignant and benign lesions,'? and SVM has been used to
study the effect of MRI enhancement thresholding on breast
cancer detection rates.'® Typical sensitivity and specificity values
of 73% and 56% have been reported for all cancers.'”

In biomedical optics CAD has been employed only in a very
limited number of studies. Two papers related to optical coher-
ence tomography (OCT) explored its utility in the diagnosis of
esophageal and cervical cancer.'*'” In another study, logistic
regression was used in semi-automatic detection of malignant
breast lesions in DOT images,'® while a fourth study extracts
attributes from three imaging parameters obtained by an NIR
imaging system and employs an SVM algorithm to distinguish
between malignant and benign lesions.!” A separate effort has
focused on the automated detection of contrast-to-noise ratio
regions of interest for DOT imaging of breast tissue.'!”
Other studies investigated the ability to discriminate between
breast tissue malignancies using tissue fluorescence and reflec-
tance measurements from diffuse reflectance spectroscopy of
excised” and in vivo’! breast tissue.

Over the past six years, our group has studied the use of CAD
techniques in the field of DOT, with particular emphasis on the
diagnosis of RA. Our initial studies involving DOT imaging of
arthritic finger PIP joints determined that visual inspection of the
reconstructed absorption (u,) and scattering (u;) coefficient dis-
tributions results in low Se and Sp values. The difficulties in
diagnosing RA from visual inspection of the DOT images
alone motivated the development of CAD tools for use in DOT.

So far, our research on the use of CAD techniques for diag-
nosing RA has focused on the classification of constant wave-
length (CW) DOT images of PIP joints.*? In early work, a small
clinical trial was used to obtain data and show that CAD
enhanced diagnosis of RA from DOT images might be possible.
Basic image features were extracted from p, images, and linear
regression (LR), LDA, and SOM were used for classification.
The results were promising, motivating a larger clinical study
to more definitively establish the ability to diagnose RA from
DOT images. The initial studies were limited in that only
CW-DOT scans were performed on PIP joints. As a result,
the utility of u; images in classification was poor, prompting
classification to be performed using only p, data.?>?
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More recently, we reported on the ability to accurately diag-
nose RA from frequency domain (FD) DOT images of PIP joints
using multidimensional LDA > In that study we introduced clas-
sification of PIP joints using both u, and p/ data. The study
proved that classification with FD-DOT images (91% Se and
86% Sp) was significantly more accurate than classification
with CW-DOT images (64% Se and 55% Sp). Furthermore,
the study showed that features derived from y; images allowed
for more accurate classification (91% Se and 86% Sp) when
compared to u, derived features (83% Se and 83% Sp). A limi-
tation in that study was that classification was not performed
using a mixture of y, and p; derived features.

While previous studies employ only basic feature extraction
schemes and basic image classification techniques, they do
show that there is a significant level of natural contrast in the
optical properties of PIP joints, likely arising from the onset
of RA. Those results indicate that DOT is a promising technique
for diagnosing RA. Results from this 2-part paper further dem-
onstrate the utility of CAD in enhancing our ability to diagnose
RA from DOT images.

2 Methods
2.1 Clinical Study

2.1.1 Rheumatoid arthritis

The etiology of RA is unknown, howeyver, it is the most common
inflammatory arthritis.”* RA is associated with significant pain
and disability, affecting about 1% of the world’s population, and
approximately 1.3 to 2.1 million people in the US.? In the US
alone, RA leads to 9 million physician visits per year.?* Patients
with RA can suffer from severe pain, joint stiffness, swelling of
multiple joints, and lack of joint mobility. The joints most often
affected by RA are the wrists, metatarsophalangeal, and PIP
joints.?* These symptoms can eventually lead to severe disabil-
ities and loss in quality of life.

In practice, the diagnosis of RA is based on the patient’s his-
tory, physical exams, radiographs, and laboratory studies. The
American College of Rheumatology (ACR) has recommended
criteria for the classification of RA (the so-called “ACR 2010
criteria”).?® Early diagnosis of RA is particularly difficult
when patients experience nonerosive symptoms (such that
they cannot be detected by radiography, sonography, or MRI
scans) and in the absence of the rheumatoid factor (RF) and
anti-cyclic citrullinated peptide (CCP) antibodies.>’

Of all imaging modalities, X-ray imaging has the best-estab-
lished role in the assessment of the severity of RA.%
Radiography can document bone damage (erosion) that results
from RA and visualize the narrowing of cartilage spaces.
However, it has long been recognized that radiography is insen-
sitive to the early manifestations of RA, namely effusion and
hypertrophy of the synovial membrane. The role of ultrasound
and MRI in the detection and diagnosis of RA has been a topic
of debate.” In recent years ultrasound imaging has emerged as a
potentially useful technique for diagnosing RA, as it appears to
be sensitive to joint effusions and synovial hypertrophy.?’
Sensitivities and specificities up to 71.1% and 81.8%, respec-
tively, have been achieved with power Doppler ultrasound,*
while contrast-enhanced MRI has been used to achieve sensitiv-
ity and specificity of 100% and 78%, respectively.’!

In its early stage, RA is characterized by inflammatory syn-
ovitis that leads to edema in the synovial membrane (synovium)
and joint capsule. The permeability of the synovium is changed,
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leading to an increase of fluid and large cells in the synovial
cavity. These changes are believed to be the source of optical
contrast that is observed in DOT images and the motivation
for exploring the ability to diagnose RA from DOT images.

Given the current state of treatment and diagnosis, research-
ers in the field have called for improved early detection of RA so
that disease-modifying antirheumatic drug (DMARD) therapies
can be initiated earlier as this would significantly help with the
management of the disease.’* Additional motivation for estab-
lishing DOT as a clinically useful tool for diagnosing RA has to
do with patient health and comfort: DOT does not expose sub-
jects to ionizing radiation, contrast agents do not need to be
used, and imaging is done contact free. As a result, subjects
can undergo routine DOT examinations without the risk of
adverse side affects and discomfort.

2.1.2 Clinical data

We recently reported a clinical study where PIP joints II to IV of
53 volunteers were imaged using a FD-DOT system, including
33 subjects with various stages of RA and 20 healthy control
subjects.® Each subject was evaluated by a rheumatologist
and diagnosed for RA according to guidelines set by the
ACR.?® The clinically dominant hand of each subject was
imaged with ultrasound and low-field MRI.

The ultrasound and MRI images were evaluated by a radi-
ologist and a rheumatologist in a blinded-review. The images
were evaluated for the presence of effusion, synovitis, and ero-
sion in PIP joints II to IV. Each reviewer classified each subject
into one of five sub-groups on the basis of these findings

Table 1 Diagnostic table based on clinical evaluation and radiologi-
cal imaging (ultrasound and MRI).

Group Effusion Erosion Synovitis RA Total joints
A No No No Yes 18
B Yes No No Yes 18
C No Yes No Yes 12
D No No Yes Yes 27
E Yes Yes Yes Yes 24
H No No No No 120

(Table 1). A third reviewer served as a tiebreaker in cases
where the initial reviewers had differing opinions (none in
this study). Subjects without signs of joint effusion, synovitis,
and erosion were divided into two subgroups: (1) subjects with
RA and (2) subjects without RA.

Imaging with a FD-DOT sagittal laser scanner of PIP joints
II to IV was performed on the clinically dominant hand of
subjects with RA and on both hands of the control group.
A frequency-modulated laser beam (670 nm, 8§ mW,
1.0 mm diameter) scanned the dorsal side of the finger from
proximal to distal end, stopping at 11 discrete locations to
allow for data acquisition. Transillumination was recorded
from each source position on the ventral side of the finger
with an intensified CCD camera. The 3-D geometry of the
scanned finger was obtained with a separate laser-scanning
unit (650 nm, 5 mW, 0.2 mm line width). Imaging was per-
formed at 0, 300, and 600 MHz. In total, 219 fingers were
imaged. Transillumination measurements were used to recon-
struct tissue yu, and p/ coefficients with a PDE-constrained
optimization algorithm that uses the equation of radiative
transfer (ERT) to model propagation of NIR light in tissue.
The system and imaging procedures are described in detail
by Hielscher et al.®

Each FD-DOT reconstruction results in volumetric distribu-
tions of y, and u, within a given finger (Fig. 1). Examples of
cross sections are shown in Fig. 2. The most pronounced
differences between joints of subjects affected by RA and of
subjects not affected by RA occur at the center of the images,
the region were the joint cavity is located. As expected, in
healthy joints both y, and u; often appear to be lower in this
region than in the surrounding tissues. The synovial fluid
that fills the joint cavity is almost free of scattering and has
a lower optical absorption coefficient than surrounding tissue.
Joints affected by RA typically do not show a drop in optical
properties in these regions. However, we found that relying
on visual inspection of DOT images alone did not yield high
sensitivities and specificities. Therefore, we started to explore
the use of CAD tools to enhance diagnostic accuracy.’

2.2 Data Pre-processing

The reconstructed optical property maps shown in Fig. 2 are
originally recovered on a 3-D unstructured mesh with tetrahe-
dral elements. To simplify the data analysis process, we use
interpolation to convert the reconstruction data from an unstruc-
tured mesh to a structured Cartesian grid. This is a three step
process: (1) define a structured grid that overlaps the tetrahedral
mesh; (2) identify the set of structured grid points n, whose x —
y — z coordinates are within the tetrahedral element defined by

(a) Coronal plane

(b) Sagittal plane

(c) Transverse plane

Fig. 1 Visualization of typical finger geometries. Sample ! cross sections are visualized within the finger geometry: (a) coronal (xy), (b) sagittal (xz), and

(c) transverse (yz) p]anes.
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Absorption Coefficient [cm_l]
(a) Fingers without RA (b) Fingers with RA

(c) Fingers without RA

4.0 7.0 10.0 13.0 16.0

Scattering Coefficient [cm_l]

(d) Fingers with RA

Fig. 2 (a and b) Absorption and (c and d) scattering coronal cross sections of PIP joints from subjects without (a, c) and with RA (b, d). All images are

reconstructed from the data obtained with 600 MHz source modulation.

the set of four unstructured mesh nodes p = {r,r,,r3,ry},
where r; refers to the x —y — z coordinates of a node in the
unstructured mesh; (3) use interpolation to compute the u,
and g values at structured grid point k (¥ k € n,) using the
reconstructed values of u, and p/ at each node r; of set p.

On the structured grid one can easily define stacks of sagittal
(perpendicular to the xz-plane), coronal (perpendicular to the
xy-plane), and transverse slices (perpendicular to the yz-
plane) as seen in Fig. 1. Consider the following example
for the rest of this section: structured image A has dimensions
M X N X P (i.e., number of voxels per axis). There are M coro-
nal, N transverse, and P sagittal slices (Fig. 3). These slices are
“stacks” of images. We apply three pre-processing procedures to
each stack.

First, we calculate the sum of all sagittal, coronal, and trans-
verse slices, respectively, resulting in three new data sets, which
we call SS, SC, and ST [Eq. (1)]. The summation of these slices
magnifies regions with large optical parameter inside the finger,
as seen in the example in Fig. 3.

N P M

SSup =D Auwnp SCoun =Y Aunp STup = Apuy.
n=1 p=1 m=1

ey

Here, SS,,, denotes pixel mp in SS, where 1 <m < M and

1 < p < P ensure that all pixels in SS are defined. The same

logic can be applied to interpret SC,, and ST,,. Next, we

compute the variance between all sagittal, coronal, and trans-
verse slices, respectively. This results in three more data sets
called VS, VC, and VT [Eq. (2)]. These data sets quantify
the variation between slices, which is a measure of variation
in optical parameters inside the finger.

N ([ss _A )2
_ mp mnp
VS, = ;71\, —
P SC 2
(]mn - Amnp)
VC,,, = Z—P — )
p=1
M S
(Inp - Amnp)
VT,, = Zl T

As in our previous example, VS, , denotes pixel mp in VS,
where 1 <m < M and 1 < p < P ensure that all pixels in image
VS are well defined. Furthermore, IS is the average sagittal
slice, where Ifnsp denotes pixel mp in IS and is defined as
SS,,,/N. The remaining variables (VC,,,, VT,,,, IS, and Iﬁz)
are defined in a similar manner.

Finally, data sets GS, GC, and GT are obtained by computing
the average of all sagittal, coronal, and transverse slices within
+2 mm from the center of the PIP joint, respectively. In this
region, where one typically finds the joint cavity, the differences

(a) Summation of Coronal Slices

(b) Summation of Sagittal Slices

-

ST TS
VA A A A A A
WYY

(c) Summation of Transverse Slices

Fig. 3 An example of the summation of coronal, transverse, and sagittal slices of the 3-D data set to create new data sets (a) SC, (b) SS, and (c) ST.
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Table 2 Summary of data pre-processing nomenclature.

Name Description

uv Entire volume (unstructured data)

SV Entire volume (structured data)

SS Summation of all sagittal slices

SC Summation of all coronal slices

ST Summation of all transverse slices

VS Variance between sagittal slices

vC Variance between coronal slices

\%i Variance between transverse slices
GS Geometrically dominant sagittal slice
GC Geometrically dominant coronal slice
GT Geometrically dominant transverse slice

between subjects affected by RA and healthy volunteers are
expected to be the largest. Furthermore, potential artifacts intro-
duced by boundary effects are minimal.*>** The center of the
joint is at the geometrical center of the imaged finger, whose
dimensions we know from the imaging procedure where the
geometry of each finger is captured. Subsequently, we use
this geometry to generate the FVM on which we compute the
forward and inverse DOT problems.’

Overall, including the entire volume of the unstructured and
structured data, the pre-processing procedures results in 11 dis-
tinct data sets per finger (and for each optical variable). The
nomenclature used for referencing each processed data set
SV, SS, SC, ST, VS, VC, VT, GS, GC, and GT) is as follows:
the first letter indicates the type of pre-processing (S = sum,

Raw Data
(CCD Images)
!

Reconstructions
On Unstructured Mesh

I

Conversion to
Structured Mesh

M Transverse Slices ]

[ Coronal Slices J [ Sagittal Slices

[ Summation of slices J [ Var. between slices ] [ Geo. dominant slice ]

Fig. 4 Data processing steps, starting with the raw CCD data, followed
by processing of the unstructured and structured data sets, and ending
with application of the three projection operators to the 3-D structured
data. This results in 11 distinct data sets (represented by each circle and
summarized in Table 2). The feature extraction operators are applied to
each set.
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V = variance, and G = geometrically dominant) and the second
letter refers to the physiological plane of the resulting data set
(S = sagittal, C = coronal, and T = transverse). Table 2 sum-
marizes nomenclature used in this paper and Fig. 4 summarizes
the 11 distinct data pre-processing steps.

2.3 Feature Extraction

We extract three different types of features from all the data sets
described in the previous section. These features include:
(1) basic statistical values, (2) Gaussian mixture model
(GMM) parameters, and (3) fast-Fourier transform (FFT) coef-
ficients. Each type of feature is described in more detail in the
following sections.

2.3.1 Basic features

The basic statistical features are the maximum, minimum, mean,
variance, and the ratio of maximum to minimum of each data
set. These features are summarized in Table 3, where each
feature is assigned a number (#) that is used for referencing
throughout this paper. These five features are obtained from
each of the 11 data sets (Table 2) by arranging the optical
parameter into vectors of ascending value. Each reconstructed
property, X, is expressed as X = [x,x,, X3, ..., Xy|, Where the
computational domain has N mesh points and x; is the optical
property at the ith mesh node.

To avoid singular outliers, we calculate the average of the 10
largest and 10 smallest values and assign them as the maximum
and minimum features, respectively. The mean and variance are
computed from the data that does not include the 10 largest and
10 smallest values. The ratio between maximum and minimum
was computed as the fifth basic feature.

2.3.2 Gaussian mixture model parameterization of
absorption and scattering maps

An additional seven features are extracted from all data sets
(except the unstructured data) by parameterizing the images
with a two-dimensional (2-D) or 3-D multivariate GMM.
Parameterization with GMMs is chosen because the recon-
structed distributions of the optical properties are typically
smooth varying functions in space. We fit the GMM by finding
estimates for amplitude A, covariance matrix X, and mean x; of
the Gaussian function (G),

Table 3 Definition of basic statistical features.

# Name

1 Maximum

2 Minimum

3 Mean

4 Varience

5 Ratio of maximum to minimum

July 2013 « Vol. 18(7)
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—
&)

Fig. 5 (a, b) 3-D example of u, around a PIP joint. (c, d) Coronal cross-section of u, across the same PIP joint. (a

——
w=)

a) Iso-surfaces of the original 3-D data.

(b) Iso-surfaces of the GMM model showing a good approximation to the original data. (c) Isolines are superlmposed on the original image to show the
resulting fit from GMM. (d) The model image generated from the coefficients of the GMM model.

G = Ag exp|—3 (x= %)= (x=x) . ©)

Parameters A, Z, and x, are estimated using the expectation-
maximization algorithm.** The model data allows for more
advanced statistical analysis as the entire image is described
by only a few parameters (Fig. 5). We set the total number
of Gaussian functions in the GMM model to 8, as we find that
they provide sufficient accuracy.

Features that described the parameterization of the concave
(positive) and convex (negative) regions are extracted, including
the absolute error between the mixture model and the original
data (Table 4). The eigenvalues of the dominant positive
and negative Gaussians are computed and extracted, as these
features can quantify the spread of the Gaussian functions.

2.3.3 Spatial frequency coefficients

In addition to using GMMs, a 2-D image or 3-D volume can also
be parameterized by performing a 2-D or 3-D discrete FFT. In
this case, the extracted image features are the coefficients of the
FFT of the u, and u] images. The 3-D-FFT (N; X N, X N3 in
dimension) results in an N; X N, X N3 matrix of FFT complex
coefficients. We truncate the matrix to store only an n; X n, X n3
matrix of coefficients centered at (N; +1)/2x (N, + 1)/

Table 4 Definition of GMM features.

# Description

6 Absolute error between original image and GMM image
7 1st eigenvalue of T of largest positive Gaussian

8 2nd eigenvalue of X of largest positive Gaussian

9 3rd eigenvalue of T of largest positive Gaussiane

10 1st eigenvalue of X of largest negative Gaussian

11 2nd eigenvalue of X of largest negative Gaussian

12 3rd eigenvalue of = of largest negative Gaussian

*These feature are only applicable when considering 3-D images.
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2 X (N3 + 1)/2, resulting in n; X n, X n3 complex coefficients.
Because of the symmetry properties of the FFT and that we
are only interested in the absolute value of the coefficients,
we reduce the number of distinct coefficients to (n; X nyX
ns + 1)/2. This process allows representation of each y, and
uy image by only (n; X ny X n3 + 1)/2 real-valued coefficients
instead of N; X N, X N3 complex FFT coefficients.

In this work, 3-D images are parameterized using n; =
n, = ny =5, resulting in 63 real-valued coefficients which
are labeled from 1 to 63, and ranked based on decreasing dis-
tance from the origin. This particular value is chosen because it
is optimal in accurately representing the original image and
simultaneously maintaining a low coefficient count. Each of
the 63 coefficients is treated as an independent image feature.

)
o2 10 L7 s
o8 o4 U35 o
6 2 1 €z
A
O O O O
(@] @] @] O

Fig. 6 FFT coefficients of a 2-D image A. Unique coefficients are num-
bered in a increasing order according to the distance from the origin,
with z > y > x axis preference used as a tie breaker.

Table 5 Definition of FFT features.

# Description

13 Absolute error between original image and image
captured by the first 5 frequencies of the 2-D- or 3-D-FFT

14-26 (For 2-D images only) Absolute value of 2-DFTT
coefficients (Fig. 6)

14-76 (For 3-D images only) Absolute value of 3-D-FTT
coefficients
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Similar methodology is used in treating 2-D images, which
results in 13 unique FFT coefficients for each image. The spatial
ordering of 3-D FFT coefficients follow the same logic as the
ordering scheme for 2-D FFT coefficients in Fig. 6. The FFT
coefficients are labeled according to Table 5.

2.3.4 Short-hand notation

To succinctly refer to various data sets and extracted features we
introduce the following short-hand notation “Feature #:
Projection Name:Optical Parameter.” For example, the maxi-
mum value of the middle sagittal slice in y, images is denoted
by F1:GS:a. Indices “a” and “s” denote u, or u, distribution
features, respectively. Labehng of FFT features starts with
F13 for the first FFT coefficient. For 2-D images, the last FFT
coefficient is F26, whereas for 3-D images it is F76 (Table 5).
Feature numbers can be referenced from Tables 3-5.
Projection names are summarized in Table 2.

Combined features provide information on the distribution of
the optical properties inside and around a PIP joint. In total, 55
basic features, 52 GMM parameterization features, and 190 FFT
coefficient features are extracted from each finger’s y, and p;
images (leading to (55 + 52 + 190) X 2 = 594 features).

2.4 Statistical Analysis
2.4.1 Kruskal-Wallis ANOVA test and Dunn’s test

The utility of each feature for classification is gauged by stat-
istical analysis on the (null) hypothesis that there are no sta-
tistically significant differences between the five diagnosis
groups (A to E) and the control group (H) (Table 1). The fol-
lowing three steps are taken to analyze the statistical signifi-
cance of each feature.

In step 1, through y? goodness-of-fit analysis we determine
that there is only a small likelihood that the extracted features are
drawn from a normally distributed population.®® Thus, paramet-
ric statistical tests should not be used. Therefore, in step 2, the
nonparametric (distribution-free) Kruskal-Wallis test is used to
determine if at least one of the six groups exhibits statistically
significant differences from the other groups. The observed
differences between the groups are statistically significant if
the H-statistic is larger than the corresponding critical value
from a y? distribution table with v = T — 1 degrees of freedom,
where T = 6, the number of distinct groups.*

In step 3, group-to-group comparison using Dunn’s test is
performed to determine which groups, if any, are significantly
different from each other. This test is chosen because it allows
direct comparison of two groups that do not have the same
size.*> This is of particular importance in our work as group
sizes vary significantly (Table 1). Dunn’s test is used to compare
all possible two subgroup combinations (i.e., A versus B, A ver-
sus C, A versus D, etc.).

2.4.2 Effective sample size

Our clinical data consists of 99 fingers from 33 subjects with RA
(three fingers per subject) and 120 fingers from 20 subjects with-
out RA (six fingers per subject). In this work, we treat each fin-
ger as an independent sample. In our calculation of Se and Sp,
we use the ESS to account for inter-dependence between DOT
images of PIP joints from the same subject (using the ICC).>*
This procedure reduces the number of independent data samples
from 99 (to a minimum of 33) for subjects with RA and from
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120 (to a minimum of 20) for subjects without RA, and leads to
reduced Se and Sp values.

For each feature, we compute the ESS value for the
affected (n,) and healthy (ny) groups, respectively, and then
compute confidence intervals for Se and Sp. The ESS (n) is
defined as

mk

=, 4

1+p(m-1) “)
where k is the number of groups or clusters (i.e., subjects),
m is the number of samples per group or cluster (i.e., fingers
per subject), and p is the ICC value, defined as

2

Sh
pr— ) 5
P siJrsfv )

where si is the variance between clusters and s2, is the vari-
ance within clusters. The ESS may vary between features
depending on the level of correlation between data samples
from the same subject as captured by p, which in turn may
affect the computed Se and Sp values.

The effect of the ICC and ESS on our results is captured by
computing the binomial proportion confidence intervals of Se
(CIZ,) and Sp (Clgp) using a Wilson score interval.® The con-
fidence intervals are defined as

e Se+ 1 a2 +7, a2 Se (1 Se) + 4—(1/2 ]
Se — 1 + Zl a/z ’ ( )
Cle Sp BT 2 l -a/2 + Zl -a/2 : <1 Sp) + in:/z 7
Sp T 1 + Z] —af2 s ( )

where a is the error percentile and z,_,, is the 1 — a/2 percen-
tile of a standard normal distribution. For example, to achieve a
95% confidence level, we set « = 0.05, so that 1 — a/2 = 0.975
and z;_,/, = 1.96. This concept is expanded to a generalized
intra-class correlation coefficient (GICC) when considering
Se and Sp for multidimensional feature combinations in the
second part of this paper. The GICC coefficient is defined as

>ijlat;
TSl et

. ®)

where ¢ and 6" are the between and within cluster covariance
matrices, respectively.*

2.4.3 ROC analysis

Using ROC curve analysis we find features that are individually
the best classifiers by determining the threshold value x;, that
best separates the two groups (i.e., one group with RA
and one without RA). The best threshold is the feature value
x that maximizes the Youden index (Y), which is defined as
Y=Se+Sp—1, where Se=TP/(TP+FN) and Sp=
TN/(TN + FP).40 Subjects with RA (groups A, B, C, D, and
E) are grouped into a single group (Affected) and compared
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Fig. 7 (Top row) Sagittal, coronal, and transverse cross sections of a healthy PIP joint. (Middle row) GMM parameterization approximation. (Bottom
row) Reconstruction of the original image using only the extracted FFT coefficients of the first five frequencies.

against the healthy group (H). A feature that perfectly separates
the affected from the healthy joints yields ¥ = 1.0, while a fea-
ture that completely fails to separate the two classes
yields ¥ = 0.0.%

3 Results

3.1 Parameterization and Spatial-Frequency Analysis

Sample results from GMM parameterization and FFT analysis
are presented in Fig. 7. The top row corresponds to the middle
U, cross sectional slices from the original data. Images in the
middle row represent the GMM parameterization of a cross sec-
tional slice of the original data. Parameterization of the data
removes contributions from the boundary, leaving only the
major interior structures. In general, the GMM models are

good approximations to the original data. Images in the bottom
row are reconstructed from only the first five FFT frequencies;
they are representative of the level of detail captured by the FFT
coefficients we extract, capturing the general distribution of y,,.
Preserving the first five frequencies minimizes the contribution
from pixels near the boundary; this is important because values
near the boundary are more prone to numerical error and noise.
Similar results are found for the /] data.

3.2 Kruskal-Wallis ANOVA

Results from Kruskal-Wallis analysis of features from images of
PIP joints from groups A to H are summarized in Fig. 8. We plot
the H-statistic as a function of data set and feature number (see
Secs. 2.2 and 2.3; Tables 2-5). There are six distinct groups
(k =6), and therefore, H > 11.07, 15.09, and 20.52 are
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Fig. 8 H-statistic value for y, (top two rows) and y; (bottom two rows) features. The threshold values for H at the 0.05 and 0.001 confidence levels are

11.07 and 20.52, respectively, and shown as horizontal red lines.
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Fig. 9 Mean value and standard error of the maximum, minimum, mean, and variance of u, and u/ images. A two sample student-t test shows
differences between features from subjects with RA and without RA are statistically significant at the @ = 0.01 level. The variance is scaled to display

on the same axis (1 scaled by 100; #; scaled by 10).

@ 10
3 0.8
< 0.
a4
206 1
'g -0-F01:UV:a,
a 04 —-F02:UV:a
8 -F03:UV:a
=02 —=—F04:UV:a|

~-F05:UV:a
0.0 : : :
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

(c) 10
£ 0.8
< 0.
o~
(5]
2 0.6 -0-F6:SS:a
'g —-F6:ST:a
x 0.4 -0-F6:SC:a
8 —=-F6:SS:s
i 0.2 ~-F6:ST:s

—+F6:SC:s
0.0 : : :
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

®) 10 s e A XX
am O-O@ -
2038 /
< 0.
a7
2064 ]
'g -0-F01:UV:s
& 04 —-F02:UV:s
8 -+-F03:UV:s
= 02 —=-F04:UV:s
0.0 —~-F05:UV:s
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

(d) 1.0
g 0.8
s 0.
a4
[
z 06 -0-F14:VS:a
'g i —-F14:VT:a
[ 0~4é --F14:VC:a
8 —=F14:VS:s
=02 ~©-F14:VT:s

) —+F14:VC:s
0.0 : : :
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Fig. 10 (a and b) ROC curves for basic features from unstructured data (FO1:UV:a and FO1:UV:s, F02:UV:a and F02:UV:s, etc.), (c) absolute error
between original data and GMM model features, and (d) DC component of 2-D-FFT features. FFT features perform better, in terms of area under the

curve, than basic features and GMM coefficients.

necessary to establish statistical significance in observed differ-
ence at the 0.05, 0.01, and 0.001 confidence levels; H > 11.07
in 249 features (131 from p, and 118 from u;), and H > 20.52
in 129 features (55 from p, and 74 from p)).

Basic features (2-D and 3-D) and features from the 2-D-FFT of
the VS and GS slice of y, data yield the most features with
H > 20.52. In the case of y/ images, basic features (2-D and
3-D) and 2-D-FFT coefficients of projections SC, VS, VT,
VC, and GS result in many features with H > 20.52. The results
show statistically significant differences between the spectral fea-
tures of PIP joints of subjects with RA and without RA.

3.3 Dunn’s Test

Table 6 shows results from Dunn’s test applied to the first five
coefficients of the 3-D-FFT of the structured data corresponding
to the low frequency components of the y, and p; distributions.
The critical Q values to establish statistically significant
differences between two subgroups at the 0.05 and 0.01 signifi-
cance levels are Q =2.936 and Q = 3.403, respectively.
Instances, where Q > 2.936, are highlighted in bold.

One can see that Q is generally greater than 2.936 when fea-
tures of group H are compared to each of the other affected
groups (A, B, C, D, and E). This means that these features
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may be useful in distinguishing between healthy volunteers
and subjects with RA. Comparisons between group A and H
show that joints of subjects with RA that do not have effusion,
erosion, or synovitis (group A) are statistically different from
joints of healthy subjects (group H). This is important because
joints from group A look like healthy joints in MRI and ultra-
sound images, while they are significantly different from one
another in DOT images. On the other hand, Q is generally
smaller than 2.936 when affected groups are compared to each
other; indicating that it may be difficult to distinguish between
the different subgroups of affected subjects. There are, however,
are some features with Q > 2.936, such as F14:5V:a and F14:
SV:s (groups B versus E), suggesting that even these subgroups
may be distinguishable. Similar results are obtained for all other
features.

Figure 9 shows the mean values and standard errors of the
maximum (ny = 59.9, ny, = 52.1), minimum (ny = 45.1, n, =
53.6), mean (ny = 55.1, ny = 52.0), and variance (ny = 62.1,
ny = 52.0) of u, and u; images for healthy volunteers and sub-
jects with RA, respectively. The standard error was computed
using the ESS of the affected and healthy groups [Eq. (4)],
denoted by ny and ny for each specific feature, respectively.
One can see that, on average, the healthy subjects show a higher
maximum g, value and a higher variance. On the other hand, the
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Fig. 11 Single feature classification results reported as the Youden index (Se + Sp — 1) from ROC analysis for u, (top two rows) and ! (bottom two rows)

features.

minimum and mean p, values are lower in healthy subjects as
compared to subjects with RA.

Similar to observations from y, images, subjects with RA
have a lower maximum g/ value but a higher minimum g/
value compared to healthy subjects. However, in contrast to
results from p, data, subjects with RA have a marginally
lower mean y/ value. Similar to results from u, images, subjects
with RA have a significantly lower variance in p] images when
compared to healthy subjects.

3.4 ROC Analysis

Examples of ROC curves are given in Fig. 10, while in Fig. 11
we show the results from ROC curve analysis of y, and ] fea-
tures. We plot the Youden index (Y) as a function of data set and
feature number (see Secs. 2.2 and 2.3; Tables 2-5). Y > 0.7 for
107 features, where 65% are from u, and 35% from p, images.
Y > 0.80 for three u/ features; variance of unstructured data
(0.82), mean of variance between transverse slices (0.81),
and the first FFT coefficient of the variance between coronal
slices (0.80). The largest Y from p, images is obtained with
the ratio of maximum to minimum of the summation of all trans-
verse slices (0.77). In general, the best single feature classifica-
tion results are from p/ features.

Of the 107 features that achieve Y > 0.70, approximately
50% are from basic statistical features, 45% are from spatial
Fourier analysis, and 5% are from GMM parameters. Over
47% of the features resulting in ¥ > 0.70 are derived from
the variance across 2-D sagittal, transverse, and coronal planes
(51 of the 107 features).
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Basic features from p] images are better classifiers than
features from yu, images [Fig. 10(a) and 10(b)]. The variance
of the unstructured data (F4:UV:s) is the best single feature
classifier (Y = 0.82) [Fig. 10(b)]. The absolute error between
original images and GMM approximation performed strongly
as one-dimensional (1-D) classifiers with up to Y =0.75
[Fig. 10(c)]. The coefficients of the lowest order term of the
2-D-FFT of variance images (VS, VT, and VC) are very strong
1-D classifiers with up to ¥ = 0.80 [Fig. 10(d)].

4 Discussion and Conclusion

The goal of this 2-part paper is to establish a framework for diag-
nosing RA from DOT images. In this part (Part 1), we present a
method for extracting features from DOT images that differen-
tiate between subjects with and without RA. The process con-
sists of three steps: (1) data pre-processing, (2) feature
extraction, and (3) statistical and ROC curve analysis of individ-
ual features.

The framework is tested on 219 DOT images of PIP joints II
to IV gathered through a clinical trial (33 subjects with RA and
20 healthy control subjects). Clinical diagnosis of RA according
to the ACR criteria is the gold standard. Ultrasound and MRI
scans of the clinically dominant hand were performed. A rheu-
matologist and a radiologist, in a blinded review, analyzed the
images and classified each subject based on detectable symp-
toms of RA (groups B to E). Subjects without signs of RA-
induced joint deformities were classified as healthy (group H)
or as affected with RA (group A) based on nonimaging based
evidence. A total of 596 features are extracted from the u, and p)
reconstructions of all imaged joints. Statistical analysis of the
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extracted features is used to find features that reveal statistically
significant differences between diagnosis groups.

Three important findings are discovered. First, through appli-
cation of the nonparametric Kruskal-Wallis ANOVA test, we
establish the existence of image features that show statistically
significant differences between subjects with RA and with-
out RA.

Second, we use Dunn’s test (p < 0.05) to discover that fea-
tures derived from group A (subjects with RA but without
abnormal findings in MRI and ultrasound scans) are statistically
different from features derived from healthy subjects (group H).
At the same time, the differences in optical properties between
group A and groups B to E were generally not significant. This is
an important finding because it shows that DOT imaging of PIP
joints has the potential to detect the presence of RA even when
ultrasound and MRI scans cannot detect effusion, synovitis, or
erosion in the joint cavity.

Third, we discover that the u; distribution yields stronger 1-D
classifiers. ROC analysis shows three u/ features for which
Y > 0.8. This is a significant improvement over the previous
work, where Y <0.59 was obtained with ROC analysis.3
This represents the first time that y; images are exploited to
yield strong differences between PIP joints of subjects with
and without RA. Additionally, we establish that the variance
between sagittal, transverse, and coronal slices yields a large
number of strong single feature classifiers (Y > 0.70).

These three findings demonstrate that changes in optical
properties induced by RA are detectable using DOT. The sta-
tistically significant differences between image features from
affected and healthy subjects show that it might be possible to
accurately diagnose RA using FD-DOT. Furthermore, the gen-
eral lack of statistically significant differences between features
from group A and groups B to E is evidence that DOT is sensi-
tive to changes in optical properties of the synovium that MRI
and ultrasound cannot resolve.

The second part of this paper focuses on multidimensional
classification using the features that result in the largest
Youden indices from ROC analysis as presented in this study.
Employing five different classification algorithms, we show that
using multiple rather than single image features leads to higher
sensitivities and specificities.
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