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Abstract. In order to monitor dynamic physiological events in near-real time, a variety of photoacoustic com-
puted tomography (PACT) systems have been developed that can rapidly acquire data. Previously reported
studies of dynamic PACT have employed conventional static methods to reconstruct a temporally ordered
sequence of images on a frame-by-frame basis. Frame-by-frame image reconstruction (FBFIR) methods fail
to exploit correlations between data frames and are known to be statistically and computationally suboptimal.
In this study, a low-rank matrix estimation-based spatiotemporal image reconstruction (LRME-STIR) method is
investigated for dynamic PACT applications. The LRME-STIR method is based on the observation that, in many
PACT applications, the number of frames is much greater than the rank of the ideal noiseless data matrix. Using
both computer-simulated and experimentally measured photoacoustic data, the performance of the LRME-STIR
method is compared with that of conventional FBFIR method followed by image-domain filtering. The results
demonstrate that the LRME-STIR method is not only computationally more efficient but also produces
more accurate dynamic PACT images than a conventional FBFIR method followed by image-domain filtering.
© 2014 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.19.5.056007]
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1 Introduction
Photoacoustic computed tomography (PACT), also known as
optoacoustic tomography, is an emerging imaging modality
that holds great promise for a wide range of biomedical imaging
applications.1–3 PACT is a hybrid imaging modality that com-
bines the high spatial resolution of ultrasound imaging and
the high soft tissue contrast of optical imaging.4–6 In PACT, a
short laser pulse is employed to illuminate an object and internal
acoustic wavefields are produced via the thermoacoustic effect.
The acoustic wavefields propagate out of the object and are mea-
sured by using ultrasonic transducers.4,5,7 From the measured
wavefield data, an image that depicts the absorbed optical
energy density distribution within the object, hereafter referred
to as the object function, is produced by using a reconstruction
algorithm. The vast majority of PACT image reconstruction
algorithms developed to date assume static imaging conditions,
in which the sought-after object function is independent of time.

In PACT studies that involve dynamic physiological proc-
esses, the object function changes with time. The goal of
dynamic PACT8–11 is to reconstruct a sequence of object func-
tion estimates that correspond to a collection of time points.
These temporal samples of the object function will be referred
to as object frames. When the spatial support of the object func-
tion is two-dimensional (2-D) or three-dimensional (3-D), the
problem can be interpreted as 3-D or four-dimensional (4-D)
tomographic imaging, where time is counted as a dimension.
At each temporal sample in a dynamic PACT study, a static

PACT data set is recorded. This data set will be referred to
as a data frame. It is assumed that the object function remains
static during acquisition of each data frame, which can be
approximately satisfied if the temporal resolution of the imaging
system is sufficiently high. An estimate of each object frame can
be reconstructed from the corresponding data frame by using a
conventional static PACT reconstruction algorithm. This image
reconstruction approach will be referred to as a frame-by-frame
image reconstruction (FBFIR) method and has been utilized in
the vast majority of previous studies of dynamic PACT.9–12 As
demonstrated in mature imaging modalities,13–19 a limitation of
FBFIR methods is that they fail to exploit correlations between
data frames and are, therefore, known to be statistically and
computationally suboptimal. For example, because each object
frame is solely determined by its corresponding data frame, in
order to avoid strong reconstruction artifacts, each data frame
has to be densely sampled. This places limitations on the tem-
poral resolution of the system. The fact that object frames are
independently reconstructed in FBFIR methods also causes
them to be computationally burdensome, especially if iterative
image reconstruction algorithms are employed for 4-D dynamic
PACT applications.11,20,21 Moreover, because they fail to exploit
temporal information contained in the measured data frames,
FBFIR methods do not optimally mitigate the effects of meas-
urement noise.13

Several image reconstruction methods have been proposed
for dynamic PACT.9–12 Gamelin et al. proposed to synthesize
a densely sampled data frame by estimating the pressure data
at the locations between transducers.22 It was demonstrated
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that the use of the method could improve the temporal resolution
of a PACT imaging system by permitting sufficiently accurate
image reconstruction from data frames of reduced sizes. How-
ever, being an FBFIR method, it is subject to the limitations dis-
cussed above. In a different study, an image-domain Karhunen
Loève (KL) filter [i.e., principal component analysis (PCA) fil-
ter] and an independent component analysis filter were applied
to the images reconstructed by using an FBFIR method.23

Unlike FBFIR methods, spatiotemporal image reconstruc-
tion (STIR) methods for dynamic tomography modalities jointly
reconstruct the sequence of object frame estimates by using all
of the data frames. These algorithms exploit statistical correla-
tions or deterministic linear dependency between either data or
image frames.24,25 In this way, STIR methods can circumvent
the limitations of FBFIR methods that are described above. For
example, statistical correlations can be exploited by Bayesian
estimation approaches14,26 or data-domain KL filtering13,16,27

to improve reconstructed image quality and/or reduce the com-
putational burden as compared to FBFIR methods. Recently
studied matrix completion methods exploit the deterministic lin-
ear dependency of data matrices15,17,18,28,29 to achieve the same
goal. A variety of advanced STIR methods have been developed
for use with established dynamic tomography modalities.13,17,29,30

When utilized in conjunction with optimized data-acquisition
protocols, STIR methods can improve the temporal resolution
of an imaging system, so that rapid dynamic physiological
events can be visualized.15,29 Despite these advantages, the
development and investigation of STIR methods for dynamic
PACT remains largely unexplored.

In this study, a low-rank matrix estimation-based STIR
(LRME-STIR) method is investigated for dynamic PACT appli-
cations. The LRME-STIR method is based on the observation
that, in many PACT applications, the number of frames is much
greater than the rank of the ideal noiseless data matrix. Our work
is inspired by the successful application of similar ideas in
dynamic magnetic resonance imaging.15,17 The remainder of
the article is organized as follows. The static and dynamic PACT
image reconstruction problems are reviewed in Sec. 2. Section 3
describes the LRME-STIR method for PACT. A description of
the numerical and experimental studies is provided in Sec. 4.
Section 5 contains the results of these studies, and the paper
concludes with a discussion in Sec. 6.

2 Background

2.1 Static Image Reconstruction in
Conventional PACT

A static PACT imaging system can be accurately described by
a continuous-to-discrete (C-D) imaging model as5,7,20,31,32

½g�jIþi¼heðtÞ�t
1

Ωj

Z
Ωj

dr0
β

4πCp

×
Z
V
drAsðrÞ× d

dt

δ
�
t− jr0−rj

c0

�
jr0−rj

����
t¼iΔT

; i¼0;1;···;I−1
j¼0;1;···;J−1; (1)

where heðtÞ is the electrical impulse response (EIR) of the
transducer,32,33 �t denotes the temporal convolution operation,
δðtÞ is the one-dimensional Dirac delta function, and β, c0,
and Cp denote the thermal coefficient of volume expansion,
the (constant) speed-of-sound, and the specific heat capacity

of the medium at constant pressure, respectively. The static
object function, AsðrÞ, is assumed to be bounded and contained
within the volume V. The quantities r and r 0 specify the spatial
coordinates within V and on the measurement surface, respec-
tively. The vector g ∈ RIJ represents a lexicographically ordered
collection of sampled values of the electrical signals produced
by the ultrasonic transducers, where J and I denote the number
of transducers employed in the imaging system and the number
of temporal samples recorded by each transducer, respectively.
The notation ½g�jIþi will be utilized to denote the ðjI þ iÞ’th
element of g. Here, the integer-valued indices j and i describe
the transducer location and temporal sample, respectively. The
temporal sampling interval is Δt, and Ωj denotes the detection
area of the j’th transducer, which is assumed to be a subset of
the measurement surface.

The sought-after object function is related to the optical
absorption coefficient, μsaðrÞ, and optical fluence, ΦsðrÞ, within
the object as AsðrÞ ¼ μsaðrÞΦsðrÞ. Note that the superscript s
indicates that these quantities are static. While quantification
of μsaðrÞ has been actively investigated,34,35 an estimate of
AsðrÞ represents the quantity produced in the majority of current
PACT studies.

Based on Eq. (1), iterative image reconstruction algorithms
have been developed for estimation of AsðrÞ.20,32,36 When the
transducer size is small and/or the object is located near the
center of a relatively large measurement geometry, the surface
integral over Ωj can be neglected. In these cases, a variety of
analytic formulae37–40 can also be employed for image
reconstruction after deconvolving the EIR from the recorded
signals.41 Linear static image reconstruction algorithms will
be described as

Âs ¼ Bg; (2)

where the matrix B ∈ RN×IJ represents a discrete image
reconstruction operator and Âs ∈ RN is the reconstructed digital
image arranged in a lexicographical order with N being the
number of pixels or voxels.

2.2 Dynamic PACT and Frame-by-Frame
Image Reconstruction

In dynamic PACT, the optical absorption coefficient μaðr; tsÞ
and the optical fluence Φðr; tsÞ are time-dependent. Note that
the optical fluence Φðr; tsÞ varies over time because of the tem-
poral variation of μaðr; tsÞ.4 The time-dependent object function
is accordingly defined as Aðr; tsÞ ≡Φðr; tsÞμaðr; tsÞ. Here and
throughout the manuscript, ts (or the corresponding index k
defined below) will be referred to as a slow-time (i.e., the
time of each frame) coordinate, while the time coordinate t
(or the corresponding index i) in Eq. (1) will be referred to
as a fast-time (i.e., the arrival time of acoustic signals)
coordinate.

The k’th frame of the dynamic object is defined as
AkðrÞ ≡Φðr; tsÞμaðr; tsÞjts¼kΔts

, for k ¼ 0; 1; · · · ; K − 1, where
K denotes the number of temporal samples, indexed by k, with
temporal sampling interval Δts . Replacing AsðrÞ in Eq. (1) by
AkðrÞ yields the k’th data frame denoted by gk ∈ RIJ, for
k ¼ 0; 1; · · · ; K − 1.

The goal of dynamic PACT is to estimate the collection of
object frames fAkðrÞgK−1k¼0 from the measured data frames of
fgkgK−1k¼0 . To accomplish this, a linear FBFIR method operates as
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Âk ¼ Bgk; for k ¼ 0; 1; · · · ; K − 1; (3)

where Âk ∈ RN represents a finite-dimensional estimate of the
k‘th object frame AkðrÞ. Note that B has to be applied K times to
obtain the sought-after sequence of image estimates fÂkgK−1k¼0 .
We define the matrices Â ∈ RN×K and G ∈ RIJ×K as

Â ¼ ½Â0jÂ1j · · · jÂK−1�; and G ¼ ½g0jg1j · · · jgK−1�;
(4)

where G will be referred to as the data matrix. In terms of these
matrices, Eq. (3) can be expressed as

Â ¼ BG: (5)

3 Low-Rank Matrix Estimation-Based
STIR for Dynamic PACT

3.1 Singular Value Decomposition-Based STIR

Consider the singular-value decomposition (SVD)24 of the data
matrix G:

G ¼
XR−1
k¼0

μkvku
†

k; (6)

where R is the rank of G, the superscript † denotes the matrix
adjoint, and fuk; vk; μ2kgR−1k¼0 is the associated singular system
that satisfies

G†Guk ¼ μ2kuk and GG†vk ¼ μ2kvk: (7)

The orthonormal vectors fukg and fvkg are related as

vk ¼
1

μk
Guk; for k ¼ 0; 1; · · · ; R − 1: (8)

Here and throughout the manuscript, the singular values will be
labeled in descending order, i.e., μ0 ≥ μ1 ≥ · · ·≥ μR−1 > 0.

On substitution from Eq. (6) into Eq. (5), one obtains

Â ¼
XR−1
k¼0

BðGukÞu†k: (9)

Equation (9) describes an STIR method that is mathematically
equivalent to the FBFIR method in Eq. (3) or (5), but, as inves-
tigated below, can be computationally more efficient. Note that,
by using resolution of the identity on the canonical basis for
the slow-time coordinate, Eq. (5) can be expressed as

Â ¼
XK−1
k¼0

BðGekÞe†k; (10)

where fekgK−1k¼0 denotes the canonical basis of RK . Equations (9)
and (10) reveal that the reconstruction operator B needs to be
applied R and K times for the STIR and FBFIR methods, res-
pectively. Since R ≤ K, this indicates that the STIR method
is computationally more efficient than an FBFIR method by
a factor of K∕R.

For many PACT applications, the data matrix G is likely to
be of low rank with R ≪ K. Based on a discrete-to-discrete
approximation7,24 of the C-D model in Eq. (1), it has been
demonstrated that for a linear imaging system, the rank of G is
determined by the rank of the object function’s finite-dimen-
sional representation,15,42 denoted by A ∈ RN×K. When pixels
are employed, A can be defined as7,24

½A�n;k ¼ AkðrnÞ; n ¼ 0; 1; · · · ; N − 1

k ¼ 0; 1; · · · ; K − 1
; (11)

with rn denoting the location of the n’th pixel. Each row of A
will be referred to as a pixel time activity curve (TAC).
Intuitively, in the same anatomical structure, the pixel TACs
are likely to be linearly dependent. For certain applications,
even different organs may possess linearly dependent TACs.
If the object to be imaged contains only a small number of
organs with independent TACs, the rank ofA will be small com-
pared with the number of slow-time frames, as will the rank of
G.15,42 In functional brain imaging,9 for example, the pixel TACs
can often be grouped into three clusters that correspond to
the cortical arteries, the veins, and other static background,
suggesting a rank of 3 for G. This idealized scenario neglects
several factors, including movement, vessel expansion/contrac-
tion, noise, and other uncertainties. These issues are discussed
in Sec. 6.

3.2 Low-Rank Regularized Data Matrix Denoising

The derivation of the STIR formula in Eq. (9) did not consider
data noise. Because of measurement noise, the measured data
matrix, denoted by ̱G, is likely to be of full rank, i.e.,
̱R ¼ K, where ̱R is the rank of ̱G. Simply replacing G in
Eq. (9) with a full-rank data matrix ̱G will expropriate the com-
putational advantages of the STIR method. Furthermore,
directly applying the STIR formula with noisy measurements
may result in image artifacts, just as would occur in FBFIR.
These artifacts can be mitigated by incorporating regularization
in the static image reconstruction operator B.20,36 Alternatively,
an explicit denoising approach can be employed to estimate
the noise-free G, from which A can be reconstructed by using
algorithms developed for idealized noise-free measurements,41

such as Eq. (9). In this study, the latter strategy is employed.
Hereafter, random quantities are underlined. The measured

data matrix ̱G can be expressed as

̱G ¼ Gþ ̱N; (12)

where ̱N is a random noise matrix of dimensions IJ × K and G
is the noiseless data matrix. Estimation of G from ̱G is a classic
image denoising problem. A variety of image denoising
algorithms can be employed for this task, including recently
studied sparsity-regularized denoising methods.41,43–45 In this
study, denoising of ̱G was performed by solving the following
optimization problem:15,46,47

Ĝ ¼ argmin
G

1

2
k ̱G −Gk2F þ βRankðGÞ; (13)

where RankðGÞ denotes the rank of G, β is a regulariza-
tion parameter, and k · kF denotes the Frobenius norm. The
Frobenius norm is defined as the square root of the sum of
the absolute squares of the matrix’s elements and can be viewed
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as an extension of the l2 vector norm to matrices. The penalty
term RankðGÞ will promote solutions Ĝ that are of low rank.
Equation (13), which will be referred to as the LRME problem,
possesses a closed-form solution that can be calculated via
the singular value hard thresholding (SVHT) estimator as48

Ĝ ¼
XR̂−1
k¼0

̱μk ̱vk ̱u†k; (14)

where f ̱uk; ̱vk; ̱μ2kg denotes the singular system of ̱G and R̂ is
the maximum of fkj̱μk > βg.

Note that the SVD of ̱G, in general, can be efficiently calcu-
lated because the number of slow-time frames is often <100 for
many dynamic PACT applications.9–11 In addition, each row
vector of Ĝ can be interpreted as a linear combination of the
row vectors of ̱G, as shown in Appendix A.

Multiple optimal estimators of the regularization parameter β
in Eq. (13), or the equivalent R̂ in Eq. (14), have been proposed
based on various criteria, including minimizing the asympto-
matic mean square error47 and minimizing the estimation
risk.48 Most of these studies assume a random white noise
model with a known noise level. In practice, there are multiple
sources of noise, including acoustic noise that can be object-
dependent49 and, therefore, difficult to model. Also, these
methods only ensure that Ĝ is an optimal estimate of G,
which does not necessarily yield an optimal estimate fÂkg. For
example, we have tested the optimal threshold value proposed in
Ref. 47. Though not included here, our computer-simulation
studies suggest that the method nearly always provides an
optimal Ĝ that minimizes kĜ −Gk2F. However, the images
reconstructed from the optimal Ĝ possess larger errors than do
the corresponding results presented in this article. Therefore, in
this study, the regularization parameter was empirically selected
for each data set, respectively, as described in Sec. 5.

3.3 LRME-Based STIR Method

Because both are conducted in the singular system of data
matrices, the low-rank regularized data matrix denoising and
the STIR method can be naturally combined as a two-step
LRME-STIR method. Because we employed the SVHT estima-

tor in Eq. (14), we obtained not only a low-rank estimate Ĝ

but also its singular system as f̱uk; ̱vk; ̱μ2kgR̂−1k¼0 with R̂ ≪ K.
The implementation procedure is summarized as follows:
(1) Compute the SVD of the data matrix ̱G. This can be
solved by many available numerical libraries.50 The resultant

f ̱uk; ̱vk; ̱μ2kgK−1k¼0 are stored in memory. (2) Estimate Ĝ by
using the SVHT estimator, i.e., Eq. (14). Many approaches
have been proposed to estimate the optimal threshold value β

or, equivalently, the optimal choice of R̂.47,48 A brief discussion
will be provided in Sec. 6. (3) Apply a static image recon-
struction algorithm to the first R̂ singular components

Ãk ¼ ̱μkḆvk; for k ¼ 0; 1; · · · ; R̂ − 1; (15)

where fÃkgR̂−1k¼0 provide an estimate of the object function in the

coordinate system specified by f̱vkgR̂−1k¼0. (4) Project fÃkgR̂−1k¼0

onto the canonical coordinate system as

Â ¼
XR̂−1
k¼0

Ãk ̱u
†

k: (16)

4 Numerical Studies
Computer-simulation and experimental data studies were con-
ducted to demonstrate the use of the LRME-STIR method
for dynamic PACT reconstruction. The performance of the
LRME-STIR was compared with an FBFIR method followed
by image-domain filtering.

4.1 Description of Computer-Simulation Studies

4.1.1 Numerical phantom

We employed a numerical phantom consisting of K ¼ 90 slow-
time object frames, denoted by fAkðrÞg89k¼0. The k’th frame of
the phantom was defined as

AkðrÞ ¼
X6
n¼0

As
nðrÞ½fn�k; (17)

where each As
nðrÞ corresponded to a circular absorber for

n ¼ 0; 1; · · · ; 6, and the vector fn described the slow-time activ-
ity of the n‘th circular absorber. The vector fn was of dimensions
90 × 1, with the k‘th element denoted by ½fn�k. The pixel TAC of
the numerical phantom was a superposition of the time activities
of the seven absorbers as described in Eq. (17). We designed one
element of ffng6n¼0 as a linear combination of the other six ele-
ments. The slow-time sampling interval was set to be 1.6 s,
which is consistent with an existing dynamic PACT imaging
system.9 Finite-dimensional representations of the object frames
AkðrÞ were created according to Eq. (11) with frngN−1

n¼0 distrib-
uted on a uniform Cartesian grid of spacing 0.05 mm. These
images were of dimension 440 × 440 and, when lexiographi-
cally ordered, represented the columns of A. These images
were displayed continuously and recorded as a video shown
in the left panel of Video 1.

4.1.2 Simulated measurement data

In the computer-simulation studies, we assumed a ring-shaped
transducer array with a radius of 25 mm. The array contained
J ¼ 512 elements, which were uniformly distributed on the
ring. Each data frame gk was analytically calculated by using
Eq. (1) with a fast-time sampling rate of 40 MHz. We assumed
idealized point-like transducers, i.e., heðtÞ ¼ δðtÞ and Ωj ¼ 0.
For each transducer, I ¼ 650 fast-time samples were calculated.
Accordingly, the simulated noise-free data matrix G had dimen-
sions of 332;800 × 90. The noise matrix ̱N contained white
Gaussian entries with variances specified as 20, 30, and 40%
of kGk2F∕ðIJKÞ. Summation of ̱N and G resulted in the
noisy data matrix ̱G according to Eq. (12).

4.1.3 Image reconstruction

The STIR formula, i.e., Eq. (9), was validated by using simu-
lated noise-free data. An FBFIR method was also implemented
for comparison. For both reconstruction methods, the static
image reconstruction operator B was defined to be a discrete
version of a 2-D filtered backprojection (FBP) formula51 whose
description in continuous form is given by
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ÂkðrÞ ¼
Cp

πc0βR 0

Z
Ω
dr 0

Z 2R 0
c0

0

dt
∂
∂t
t

×
∂
∂t
log jt2c20 − jr 0 − rj2j

Z
t

0

dτgkðr 0; τÞ; (18)

where R 0 ¼ 25 mm was the scanning radius, c0 ¼ 1.5 mm∕μs,
Ω was the measurement circle, Cp∕β was set to be 1.0 in arbi-
trary units, and the measured pressure gðr 0; tÞ for the k’th frame
was a function of location r 0 ∈ Ω and fast-time t. Since we
assumed idealized point-like transducers, samples of gðr 0; tÞ
were equivalent to the simulated measurement data. Spatial sam-
ples of AðrÞ that resided on the same Cartesian grid employed in
Eq. (11) were computed by discretizing Eq. (18).

The LRME-STIR method described in Sec. 3.3 was evalu-
ated by using simulated noisy measurement data. We also imple-
mented the FBFIR method followed by two types of image-
domain filtering, namely, a Hann window low-pass filter and
a PCA filter. These image-domain filters were applied to
every pixel TAC of the images reconstructed by using the
FBFIR method. Implementations of these filters are described

in Appendices B and C. The FBFIR method followed by either
the Hann window low-pass filter or the PCA filter will be
referred to as the FBFIR-Hann method or the FBFIR-PCA
method, respectively. Note that the performance of each method
was affected by the choice of regularization parameter β, the
cutoff frequency fc, and the cutoff order Kc, respectively.
In order to compare optimal performances of these methods,
we swept the regularization parameter values over wide ranges
until the Euclidean distance between the reconstructed images
and the phantom was minimized.

The accuracy of reconstructed images was quantified by
the mean squared error (MSE)

MSE ¼ 1

NK
kA − Âk2F: (19)

4.2 Experimental Studies

The LRME-STIR method was also evaluated with experimental
data. The experimental data, also referred to as raw data, were
acquired in a previous study of the wash-in process of Evans

k=0

k=45 k=60

k=15 k=30

k=75

AD

C

B

Fig. 1 Slow-time frames of the images reconstructed by the use of spatiotemporal image reconstruction
(STIR) from simulated noise-free data (Video 1, QuickTime 164 KB) [URL: http://dx.doi.org/10.1117/1
.JBO.19.5.056007.1].

0 30 60 89

0
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1

Slow−time frame index (k)

A
k [a

.u
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Phantom, Pixel−A

Phantom, Pixel−B

Phantom, Pixel−C

Phantom, Pixel−D

STIR, Pixel−A

STIR, Pixel−B

STIR, Pixel−C

STIR, Pixel−D

Fig. 2 Pixel time activity curves (TACs) of the phantom (solid) and of the images reconstructed by using
STIR from noise-free data (circle), where blue, red, green, and black correspond to the pixels marked by
A, B, C, and D in Fig. 1, respectively.
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blue dye in a mouse brain.9 The small-animal photoacoustic im-
aging system contained a 512-element, i.e., J ¼ 512, full-ring
transducer array and is described in detail elsewhere.12,52 In
order to form a data frame, each element acquired I ¼ 1300

fast-time samples at the sampling rate of 40 MHz. Each trans-
ducer element in the array had a central frequency of 5 MHz and
was focused in elevation. The combined foci of all elements
created a 2-cm-diameter central imaging region with 100 μm
in-plane resolution.8,53 Light illumination was provided by

an optical parametric oscillator laser, tunable from 400 to
680 nm. The mouse was anesthetized using isoflurane and
mounted in the system on a lab-made holder. During the experi-
ment, Evans blue was slowly injected through the tail vein over
70 s, and the animal was simultaneously imaged at a frame
rate of 0.625 s∕frame. Accordingly, the slow-time sampling
interval was 1.6 s and a total of K ¼ 90 frames were acquired.
Additional details regarding the experimental procedure can be
found in Ref. 9.

For both the FBFIR and the STIR methods, the static image
reconstruction operator B was defined to be a discrete version of
the simple backprojection operator.

AðrÞ ≈
Z
Ω
dr 0pðr 0; tÞj

t¼jr−r 0 j
c0

: (20)

This operator has been employed for image reconstruction in
experimental PACT studies and provides only qualitative
images.54 A variety of FBP formulae have been reported.9,10,52

However, they are based on idealized imaging models that limit
their ability to improve image quality. In our study, Eq. (20) was
employed to reconstruct images that were sampled at locations
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Fig. 3 Sixtieth slow-time frames of (a) the phantom, and the images
reconstructed by using (b) the frame-by-frame image reconstruction
(FBFIR)-Hann, (c) the FBFIR-PCA, and (d) the low-rank matrix esti-
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noisy data contaminated with 20% Gaussian white noise (Video 2,
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on a uniform 360 × 240 Cartesian grid with a grid spacing of
0.05 mm. Accordingly, N ¼ 360 × 240.

Because the imaged blood vessels in the mouse brain were
shallow and highly absorbing, the raw data set possessed a high
signal-to-noise ratio (SNR). In order to emulate imaging condi-
tions or other hardware configurations that would produce lower
SNR data, we added computer-simulated Gaussian white noise
to the raw data, from which images were reconstructed by using
the LRME-STIR, FBFIR-Hann, and FBFIR-PCA methods. The
artificially synthesized data sets will be referred to as the high-
noise data. We lacked knowledge of ground truth and, therefore,
employed the images reconstructed from the original raw data
by using the FBFIR method as a reference. The variance of the
simulated noise was 300% of kGk2F∕ðIJKÞ. The accuracy of
reconstructed images was quantified by computing the MSE
of the reconstructed images and the reference images.

5 Results

5.1 Images Reconstructed from Simulated
Noise-Free Data

The rank of the data matrix G was six because ffng6n¼0 con-
tained six linearly independent vectors.15 Therefore, the FBP
algorithm was applied six times when implementing the
STIR method. As shown in Video 1, the reconstructed images
are nearly identical to the numerical phantom, with MSE ¼
5.08 × 10−4. Several isolated slow-time frames of the recon-
structed images are displayed in Fig. 1. The pixel TACs of
the reconstructed images align closely with those of the numeri-
cal phantom, as shown in Fig. 2. Though not shown here,
the images reconstructed by using the FBFIR method are very
similar to those reconstructed by the STIR method. However,
the FBFIR method required applying the FBP algorithm
90 times. This idealized noise-free simulation corroborates the
mathematical equivalence of the FBFIR and the STIR methods
and demonstrates that the STIR method is a computationally
efficient alternative to conventional FBFIR when the data matrix
is of low rank.

5.2 Images Reconstructed from Simulated
Noisy Data

As shown in Figs. 3 to 6, images reconstructed by using the
LRME-STIR method are more accurate than those reconstructed
via the FBFIR-Hann method and the FBFIR-PCA method.
Figure 3 displays the 60’th slow-time frames of the numerical

phantom and of the images reconstructed by all three methods.
It is interesting to note that no obvious artifacts due to noise are
visibly obvious in the isolated slow-time frames. Likely, the
image noise was effectively mitigated during backprojection
due to the densely sampled measurement data employed. How-
ever, the noise becomes obvious along the slow-time axis in the
reconstructed images as shown in Figs. 4 and 5. Particularly,
streak artifacts can be observed in the image produced by the
FBFIR-PCA method shown in Fig. 4(c). Also, as expected,
the Hann-window low-pass filter removes high-frequency com-
ponents of both noise and signals, as shown in the TACs of pixel
A in Fig. 5(a). In contrast, the LRME-STIR method mitigates
noise with minimal degradation of signals as shown in Fig. 5(c).
The improved accuracy from the LRME-STIR method can also
be observed in Video 2. It is interesting to observe that the
FBFIR-PCA, in general, performs worst among the three algo-
rithms (see Fig. 5). This observation is likely due to the noise
correlation introduced by the FBP algorithm, which degrades
the performance of the PCA-based filtering.27 The superior
performance of the LRME-STIR method is consistent across
varying noise levels, as shown in Fig. 6. In addition, the LRME-
STIR method is computationally much more efficient, since the
FBP algorithm needs to be applied only six times (for the 20%
noisy data), as opposed to the FBFIR methods that require
applying the FBP algorithm 90 times.

5.3 Images Reconstructed from Experimental Data

As shown in Fig. 7, an L-shaped singular value spectrum is
observed for the measured data matrix ̱G, revealing that its
energy is concentrated in the first few singular components.
This suggests that the noise-free data matrix G is approximately
of low rank. Similar to the computer-simulation studies, the iso-
lated slow-time frames of the images reconstructed by using the
LRME-STIR and the FBFIR methods are, in general, very sim-
ilar (see Fig. 8). Here, β was selected so that the resultant
denoised data matrix Ĝ was of rank R̂ ¼ 4, corresponding to
the elbow point in Fig. 7. This heuristic estimator of β has
been widely employed in similar studies.13,17,27 Estimates of
fAkðx ¼ 0; yÞg89k¼0 reconstructed by using the FBFIR and the
LRME-STIR methods are displayed in Fig. 9. Images recon-
structed by using the LRME-STIR method appear to be less
noisy than those reconstructed by using the FBFIR method
(revealed clearly in Video 3). It is evident that the LRME-
STIR method accurately captured the dye wash-in process, as
shown in Fig. 10, which represents the dynamic process of
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Fig. 6 Plots of the mean squared errors (MSE’s) of reconstructed
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Fig. 7 The singular value spectra of the measured raw data ̱P.
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interest. In addition, the computation required in the LRME-
STIR method was only 4∕90 of that required in the FBFIR
method.

In the images reconstructed from the emulated high-noise-
level data, the isolated slow-time frames in Fig. 11 reveal little
difference among the FBFIR-Hann, the FBFIR-PCA, and the
LRME-STIR methods, as expected. However, Fig. 12(b) and
the slow-time TACs in Fig. 13 show severe distortions by
using the FBFIR-Hann method. The MSE of the images recon-
structed by using the FBFIR-Hann, the FBFIR-PCA, and
the LRME-STIR methods are 1.58 × 10−2, 1.43 × 10−2, and
1.42 × 10−2, respectively. Unlike the results in the computer-
simulation studies, the images reconstructed by using the
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FBFIR-PCA and the LRME-STIR methods appear to be similar.
This observation is likely due to the fact that the simple
backprojection does not correlate the noise. Nonetheless, the
computation was reduced by a factor of 90∕4 when the LRME-
STIR method was employed.

6 Conclusions and Discussion
In this study, we proposed and investigated an LRME-STIR
method for dynamic PACT image reconstruction. The method
employs a data denoising step followed by image reconstruction
conducted in the singular system of the data matrix. In the ideal
noise-free scenario, the method is mathematically equivalent to,
but can be computationally far more efficient than, the conven-
tional FBFIR method. In practice, compared with the conven-
tional FBFIR method, the LRME-STIR method can improve
not only the computational efficiency but also the quantita-
tive accuracy due to the low-rank regularization employed in
the data denoising step. Although our studies employed a 2-D
imaging geometry, our conclusions are equally applicable to
the general 3-D case.

The LRME-STIR method exploits the fact that, for many
dynamic PACT applications, the data matrix can be approxi-
mately described as a low-rank matrix whose rank is typically
much smaller than the number of slow-time frames. The low-
rank assumption has been explored for other dynamic imaging
applications.15,17 However, if a small moving structure is of inter-
est, the data matrix may not be effectively low-rank. Instead, the
data matrix can be decomposed into a low-rank component and
a sparse component by using robust PCA.18,28,29 Application of
robust PCA to dynamic PACT remains an interesting topic for
future studies.

Under certain conditions, the implementation of the LRME-
STIR method is identical to that of conventional data-domain
KL filtering.13,25,27 More specifically, this is true when (1) the
sample covariance matrix, i.e., ̱G† ̱G, is employed to estimate
the covariance matrix for the data-domain KL filtering and
(2) the low-rank assumption is formulated as the optimization
problem in Eq. (13) for the LRME-STIR. Without satisfying
these conditions, the implementation, as well as the perfor-
mance, of the LRME-STIR method will be different from
that of the data-domain KL filtering. It is well-known that
a variety of other algorithms can be employed to estimate the
covariance matrix.55 Also, based on the same low-rank matrix
assumption, the data matrix denoising problem can be formu-
lated in different ways.48 For example, a commonly employed
nuclear norm minimization formulation is expressed as18,29,56

Ĝ ¼ argmin
G

1

2
k ̱G −Gk2F þ βkGk�; (21)

where the nuclear norm of G, denoted by kGk�, functions as
a convex relaxation of the RankðGÞ in Eq. (13). It is currently
unclear which formulation is optimal for PACT applications.
However, it is clear that the rationales behind the LRME-STIR
method and the data-domain KL filtering are substantially
different.

The computational advantage of the LRME-STIR method
will be more significant if advanced iterative image reconstruc-
tion algorithms are employed to implement the linear image
reconstruction operator B in Eq. (9).20 Combining the LRME-
STIR method with iterative image reconstruction algorithms
remains as an important topic for future studies.

Appendix A: Interpretation of the Row Vectors
of Ĝ as Linear Combinations of the Row
Vectors of ̱G
Assume ̱G is of full rank, i.e, Rankð̱GÞ ¼ K, with K ≤ ðIJÞ.
Each right singular vector of ̱G can be written as a linear com-
bination of the transpose of the row vectors of ̱G, i.e.,

uk ¼
XIJ−1
m¼0

ck;mqm; for k ¼ 0; 1; · · · ; K − 1; (22)

where qm denotes the transpose of the m’th row vector of ̱G and
ck;m denotes the corresponding coefficient. On substitution of
uk from Eq. (22) into Eq. (8), one obtains
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Fig. 13 Pixel TACs of the reference images (solid) and the images
reconstructed by using (a) the FBFIR-Hann, (b) the FBFIR-PCA,
and (c) the LRME-STIR methods, respectively, from the experimental
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and black correspond to the pixels marked by A, B, C, and D in Fig. 8,
respectively.
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̱vk ¼
1

̱μk

2
6666664

P
IJ−1
m¼0 ck;mq

†

0qmP
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m¼0 ck;mq

†

1qm

..

.

P
IJ−1
m¼0 ck;mq

†

IJ−1qm

3
7777775
;

for k ¼ 0; 1; · · · ; K − 1:(23)

Substituting Eq. (23) into Eq. (14) results in

Ĝ¼

2
666666664

P
IJ−1
m 0¼0

�P
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m¼0 ck;mck;m 0q†0qm

�
q†m 0
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�
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�P
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k¼0

P
IJ−1
m¼0 ck;mck;m 0q†IJ−1qm

�
q†m 0

3
777777775
: (24)

Note that the quantities in all parentheses in Eq. (24) are scalars.
Therefore, each row vector of Ĝ can be interpreted as a linear
combination of the row vectors of ̱G.

Appendix B: Implementation of Image-Domain
Hann Window Filter
The image-domain Hann window low-pass filter is defined as

WðfÞ ¼ 1

2

�
1 − cos

�
π
fc − f
fc

��
; (25)

where f is the temporal frequency coordinate corresponding to
the slow-time coordinate and fc is a cutoff frequency function-
ing as a regularization parameter. Since the slow-time sampling
interval was 1.6 s, we swept the value of fc from 0.02 to 0.3 Hz,
with a step size of 0.01 Hz.

Appendix C: Implementation of Image-Domain
Principal Component Analysis Filter
Implementation of the principal component analysis filter is
summarized as follows. First, we estimate the covariance matrix
of the random slow-time activity vector by57

S ¼ 1

N − 1
ð̱Â − ĀÞ†ð ̱Â − ĀÞ; (26)

where S is the sample covariance matrix of dimension K × K, N
is the number of pixels in each slow-time frame, and ̱Â denotes
the image matrix reconstructed by using the FBFIR method
from noisy data. Note that Eq. (26) treats each row of ̱Â as
a realization of the random slow-time activity vector. TheN real-
izations become zero-mean after subtraction of the mean image
matrix Ā, which is defined as

Ā ¼

2
6664
Ā0 Ā1 · · · ĀK−1
Ā0 Ā1 · · · ĀK−1

..

. ..
.

· · · ..
.

Ā0 Ā1 · · · ĀK−1

3
7775; (27)

where

Āk ¼
1

N

XN−1

n¼0

½ ̱Â�n;k; for k ¼ 0; 1; · · · ; K − 1: (28)

Accordingly, both ̱Â and Ā are of dimensions N × K. Second,
we calculate the eigenvectors of S. The eigenvectors, denoted by
fηkgK−1

k¼0 , are sorted so that the corresponding eigenvalues
decrease as k increases. Finally, we filter the high-order
components.

Â ¼
XKc−1

k¼0

ð̱Â − ĀÞηkη†k þ Ā; (29)

where Kc is the cutoff order functioning as a regularization
parameter.
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