Journal of

Biomedical Optics

BiomedicalOptics.SPIEDigitalLibrary.org

Photoacoustic simulations of
microvascular bleeding: spectral
analysis and its application for
monitoring vascular-targeted
treatments

Muhannad N. Fadhel
Eno Hysi

Jason Zalev
Michael C. Kolios

Muhannad N. Fadhel, Eno Hysi, Jason Zalev, Michael C. Kolios, “Photoacoustic simulations of
spl E microvascular bleeding: spectral analysis and its application for monitoring vascular-targeted
L] treatments,” J. Biomed. Opt. 24(11), 116001 (2019), doi: 10.1117/1.JBO.24.11.116001.



Journal of Biomedical Optics 24(11), 116001 (November 2019)

Photoacoustic simulations of microvascular bleeding:
spectral analysis and its application for monitoring
vascular-targeted treatments

Muhannad N. Fadhel,®® Eno Hysi,*° Jason Zalev,*° and Michael C. Kolios®"*

2Ryerson University, Department of Physics, Toronto, Canada

BInstitute for Biomedical Engineering, Science and Technology, St. Michael’s Hospital, Keenan Research Center, Toronto, Canada

Abstract. Solid tumors are typically supplied nutrients by a network of irregular blood vessels. By targeting
these vascular networks, it might be possible to hinder cancer growth and metastasis. Vascular disrupting
agents induce intertumoral hemorrhaging, making photoacoustic (PA) imaging well positioned to detect bleeding
due to its sensitivity to hemoglobin and its various states. We introduce a fractal-based numerical model of inter-
tumoral hemorrhaging to simulate the PA signals from disrupted tumor blood vessels. The fractal model uses
bifurcated cylinders to represent vascular trees. To mimic bleeding from blood vessels, hemoglobin diffusion
from microvessels was simulated. In the simulations, the PA signals were detected by a linear array transducer
(30 MHz center frequency) of four different vascular trees. The power spectrum of each beamformed PA signal
was computed and fitted to a straight line within the —6-dB bandwidth of the receiving transducer. The spectral
slope and midband fit (MBF) based on the fit decreased by 0.11 dB/MHz and 2.12 dB, respectively, 1 h post
bleeding, while the y-intercept increased by 1.21 dB. The results suggest that spectral PA analysis can be used
to measure changes in the concentration and spatial distribution of hemoglobin in tissue without the need to
resolve individual vessels. The simulations support the feasibility of using PA imaging and spectral analysis
in cancer treatment monitoring by detecting microvessel disruption. © The Authors. Published by SPIE under a Creative
Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication,

including its DOI. [DOI: 10.1117/1.JB0O.24.11.116001]

Keywords: vascular tree modeling; tumor hemorrhaging; photoacoustic radiofrequency analysis; cancer treatment monitoring.
Paper 190177RR received May 31, 2019; accepted for publication Oct. 21, 2019; published online Nov. 9, 2019.

1 Introduction

A class of cancer therapeutic drugs targeting blood vessels,
known as vascular disrupting agents (VDAs), induces intertu-
moral hemorrhage.! The drugs are activated at the location
of the tumor to disrupt endothelial and/or intravascular cells
(e.g., red blood cells), which results in hemoglobin leakage into
the surrounding tissues.'™ The outcome is vessel disruption fol-
lowed by tumor cell death and extensive hemorrhagic necrosis
within hours of treatment delivery.*

Photoacoustic (PA) imaging has been proposed to monitor
tumor response to various types of cancer therapies.>® PA im-
aging can be used to acquire images with high contrast and
greater penetration depth, compared with other optical and ultra-
sound modalities.'” The most common type of analysis in PA
imaging is the time-domain amplitude analysis of the PA sig-
nals. However, microvessels deep in tissue cannot be resolved
using acoustic-resolution PA imaging. Ultrasound frequency
analysis of the PA signals has been shown to detect changes
smaller than the system resolution,''™!* and this analysis may
permit assessment of microvessel bleeding. The ability to detect
and quantify the occurrence of bleeding can have an important
role for PA modeling in cancer therapy.

The potential of spectral analysis of the PA signals has
not been fully investigated, especially for cancer treatment
monitoring.” Utilizing spectral analysis can improve the
sensitivity of PA imaging to surpass the acoustic-resolution
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approaches. Changes in the frequency content of the PA signals
are associated with the size, concentration, and spatial distribu-
tion of dominant optical absorbing chromophores.'>™'> This is
analogous to quantitative ultrasound analysis, which is associ-
ated with the dominant ultrasound scattering source.'®!”

PA spectral analysis provides system-independent parame-
ters that are correlated to the structure of optically absorbing
chromophores.'"'® To extract these spectral parameters, the
time-domain radiofrequency (RF) PA signals are transformed
into the frequency domain. System-dependent parameters are
removed by normalizing the PA signal to a reference power
spectrum. The slope, y-intercept, and midband fit (MBF) param-
eters are extracted from the line of best fit of the normalized
power spectra and are correlated to tissue microstructures.
The advantages of PA spectral analysis have been used in assess-
ing tumors, liver conditions, and osteoporotic patients,'>!3-19-23

For cancer monitoring, a decrease in the PA spectral slope at
multiple wavelengths (45% at 750 nm and 73% at 850 nm) has
been reported 2 h after introducing a VDA (HaT-DOX).” The
changes in the spectral slope have been linked to hemorrhaging
of blood vessels. However, the impacts of bleeding due to inter-
tumoral hemorrhaging on the generated PA signals have never
been simulated.

Simulations were undertaken to model the generation of PA
signals from vascular trees. This would allow us to examine the
feasibility of detecting the effects of VDAs on the PA signals
from tissue. The tumor microvessel geometry was simulated
using a vascular tree model. The model uses cylinders that bifur-
cate into two daughter vessels,>*?3 including a bleeding model
as a result of vascular collapse, which has been applied in
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modeling the extravasation of blood outside the vessels.?*

The detection was simulated for widely available linear array
transducers. In this work, we perform simulations that can pro-
vide insights into PA spectral analysis parameters to assess the
effectiveness of cancer therapy. This could potentially improve
the therapeutic outcome and reduce the tumor reoccurrence rate
noninvasively and without the need of contrast agents, to pro-
vide timely feedback on the effectiveness of the drug/therapeutic
approach.

2 Simulation Approach

The vascular tree structure of tumor vessels was simulated using
a fractal model with cylindrical bases.?*® The extravasation of
blood outside the vessels was simulated using Fick’s law of dif-
fusion, as previously done to model bleeding.?*>' The PA sig-
nals of an omnidirectional point detector were generated using
the solution to the PA wave equation with a custom simulator of
the Green’s function approach accounting for the directivity and
detector bandwidth. Two-dimensional PA images were generated
using delay and sum of the PA signals. Spectral analysis was per-
formed by extracting the spectral slope, y-intercept, and MBE.!”

2.1 Vascular Tree Modeling

The tumor vascular tree is generated using a fractal geometry
model.?** In this paper, vascular tree geometrical parameters
were selected to model chaotic vessels similar to vessels found
in tumors [Fig. 1(a)]. The simulations were performed in three
dimensions, starting with the third branch of 150 ym in diameter
and 1 mm in length simulated at the origin point (0, 0, 0) mm,
leading up to the 12th branch with an average diameter of 14 ym
and length of 0.35 mm. These values were chosen to mimic
measured tumor vasculatures of mammary carcinoma.

The parameters of the chaotic vasculatures were acquired
from literature®*® and are summarized here. The size of the
daughter fragments is determined by the bifurcation index
(). The bifurcation index is used to correlate the left and right
daughter segments through the equation below:

p = Dr/Dy, (D

where the f value range is 0 < f < 1. The left daughter segment
(D;) was assumed to be larger than right daughter segment (Dg)

(@)

D, |

to represent the diameter asymmetry. Solving for D; and Dy, is
achieved using the hemodynamic energy minimizing constrains.
The f was fixed to a value of 0.95 for this simulation. The dis-
tance (k) was used to correlate the length (L) of the daughter and
parent segments and distance was set to 0.9 for this simulation.
Since the simulations are done in 3D, there were two angles for
each daughter segment. The first angle is called the branching
orientation (¢) and ranges from 0 deg to 360 deg, while the other
angle is called the branching angle (9) and ranges from 25 deg to
140 deg. These parameters were used to control the branching
angle of the daughter segments with respect to the parent
segment.

2.2 Photoacoustic Signal Generation

When short laser pulses irradiate optically absorbing objects, the
absorbers emit PA waves that encode their geometric informa-
tion. The PA signal can be computed for a defined laser profile /
and the absorption coefficient map of the tissue y,. The product
of these two parameters results in the heating function H. The
heating function was used to compute the shape of the generated
PA signal. The forward solution of the PA wave equation was
computed based on the free-space Green’s function:**’

“ae I/

where B is the thermal coefficient of the volume expansion, C),
is the specific heat capacity of the tissue at constant pressure, c is
the speed of ultrasound in water set at 1540 m/s, r is the loca-
tion of the point detector, and r’ is the location of the absorber,
as demonstrated in Fig. 1(b). The above equation is used to sim-
ulate the PA signal generated from the point detector with a
small aperture as a response of the heat deposition function
H. The equation assumes constant density and speed of sound
between the vessels and the background tissue. The equation
applies spherical integration with a radius determined by the
acoustic time of flight. The constant B/4zC,, only contributes
to the amplitude of the PA signal and was set to 1 for these
simulations.

The heating function H was computed for individual vessels,
and generated pressure signals were then superimposed for

&r'sH(r' 1)
r—r’|5t/

p(r.1) (@)

)
/

I— _\'—’ |

t'=t P

Fig. 1 (a) An illustration of the fractal tree geometrical parameters used for generating the vascular
tree. The parent segment bifurcates into two daughter segments with different diameters and lengths.
(b) A schematic representation of the detected PA signal from an absorber located at r’ and a point

detector located at r.
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the entire tree with the appropriate geometrical time delays.
Each cylindrical vessel has a defined radius, start position,
and end position specified by the fractal tree geometry. The
model assumes uniform illumination of the laser light with
H(ryi00d, 1) > H(Fissue- ) Tepresenting that the absorption of
blood vessels is much larger than the absorption of the surround-
ing tissues, resulting in

1, in the vessel,
H(r.7) = {0, otherwise. 3)

2.3 Modeling the Diffusion of Blood outside
Microvessels

To model VDA, the diffusion of extravasated blood outside the
vessels was simulated using Fick’s law of diffusion.? Fick’s law
relates the amount of bleeding that we anticipate to the duration
of time elapsed since vascular disruption. It states that the rate of
change of the concentration at a point in space is proportional to
the second derivative of concentration in space with constant
diffusion coefficient (d).

The diffused blood (n) at location x and time ¢ for a vessel
boundary located at position o (cylindrical symmetry was
assumed) with initial concentration of n, was computed using
the one-dimensional solution to the Fick’s law equation:

x
n(x,t) = n,erfc <2\/TH[> , 4)

where dy is the diffusion of hemoglobin with a value of
0.0005 mm?/h* and erfc is the complementary error function.
To test the applicability of this approach, Eq. (4) was computed
for a single microvessel 20 ym in diameter and 2 mm in length.
The diffused blood extends to the region in which hemoglobin is
present. This results in an increase in apparent vessel size of full
width at half maximum of 20, 34, 50, 62 um for time intervals of
t =0,0.1, 0.5, and 1.0 h. The time intervals that were chosen as
preliminary studies from our group suggest that vascular hem-
orrhaging occurs early after the administration of treatments that
target blood vessels.>’

The diffusion of blood outside the vessels was then applied to
the entire vascular tree. The diffusion of blood was simulated
using Fick’s law for vessels smaller than 30 ym in diameter after
0.5 and 1 h of vessel disruption to represent newly generated
tumor vessels. The generated PA signals from a vascular tree
simulated with extravasated blood were compared with the same
vascular tree without extravasated blood. The comparison
involved generating PA B-mode images and performing spectral
analysis on the resulting beamformed PA signals [Eq. (2)].

2.4 Photoacoustic Signal Modeling and Image
Beamforming

The simulated PA signals were generated by considering several
features of a high-frequency commercial ultrasound transducer
used in our laboratory (VevoLAZR LZ550, Fujifilm-Visual
Sonics, Toronto, Canada). It has the capability to image tumors
at a depth of more than 1 cm with 45 pm lateral resolution. The
transducer was simulated for frequency ranges between 15 to
45 MHz (the —6 dB bandwidth) using a Butterworth bandpass
filter of the third order, which was applied to the generated
PA signals. The PA signals were computed for 256 elements
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(14.08 mm in length). The distance of the transducer to the origi-
nal parent vessel segment was set to 11 mm (the approximate
focus of the laser beam).

The signals were beamformed using a conventional delay-
and-sum method for every 64 elements. The directivity of the
transducer a was accounted for using the equation below:

a(0) = Re{Jinc[zDA~! sin(9)]}, (5)

where 0 is the angle to the vector line, D is the diameter of
a single element in the transducer, and 4 is the ultrasound wave-
length at the central frequency of the transducer (~50 pm for the
speed of sound of 1540 m/s). Finally, apodization of the trans-
ducer was applied using a Hamming filter. The generated
B-mode images of the vasculature tree with and without extrava-
sated blood were then visually compared.

2.5 Experimental Validation

A vessel phantom was prepared using thin fishing line of 20 ym
in diameter embedded in 10% porcine gelatin skin (Sigma-
Aldrich Inc., Canada). The fishing line was removed and
Sudan black dye (Sigma-Aldrich Inc., Canada) dissolved in
methanol was injected into the vessel. The phantom was then
imaged using the VevoLAZR system (FujiFilm-VisualSonics
Inc., Canada) coupled to the LZ-550 transducer at 700 nm.
Signals of the vessel phantom were acquired at r = 0, 1, 5, and
10 min after setup. A reference signal was acquired from a 20-
nm-thick gold film. The measured RF signals were extracted
from the VevoLAZR system and beamformed using the conven-
tional delay-and-sum method. The beamformed RF signals were
windowed and transformed into the frequency domain. The cal-
culated power spectra were normalized to the gold film refer-
ence signals.

2.6 Photoacoustic Radiofrequency Spectral
Analysis

The simulated PA signals were windowed using a moving Hann
window of size 1.03 x 1.80 mm with 50% overlap. The win-
dows were applied for elements 32 to 224 at the location of the
vascular tree. The power spectra of the windowed signals were
computed and averaged. The averaged power spectrum was fit-
ted to a straight line for the simulated frequencies. The param-
eters calculated from the fitted line were the spectral slope,
y-intercept, and MBF. These parameters were averaged and
compared for parameters derived from the vascular tree with and
without extravasated blood.

3 Results and Discussion

3.1 Modeling Vascular Bleeding from a Single
Microvessel

A single microvessel 10 ym in diameter and 2 mm in length
was modeled. The PA signal at a point detector 11 mm away
from the microvessel source was computed using Eq. (2).
Hemoglobin diffusion into the interstitium was modeled using
Eq. (4) to account for microvessel damage due to the VDA.
Spatial and frequency analyses of generated PA signals from
the single microvessel are presented in Fig. 2. Figure 2(a) is
a schematic representation of the geometry of a simulated micro-
vessel. Figure 2(b) shows images of the cross section of two
simulated microvessels before vessel disruption and 1 h after.
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Fig. 2 (a) A schematic representation of the simulated vessel geometry of 20-um-thick vessel. (b) A
schematic representation of the cross section of the vessel in (a) before bleeding and after 1 h of bleeding
simulated using Fick’s law. (c) Line profile of the blood distribution, generated PA signal in (d) spatial and
(e) frequency domains at different time points after vessel disruption.

This demonstrates the changes in the distribution and content of the interstitium. Specifically, the power spectra contain features
hemoglobin after bleeding. For bleeding, there is a gradient (minima and maxima) that change with time as the hemorrhag-
change in the hemoglobin content once it enters the tissues. ing area increases. Such features are characteristic of increasing
In contrast, before bleeding there is a sharp change in the hemo- absorber sizes.!* As the bleeding progresses, the slope of the
globin content outside the vessel. This will have an impact in the power spectra decreases, and the y-intercept increases for this
generated PA signals through increasing the effective absorber vessel geometry and ultrasound detection geometry/bandwidth.
size and thereby affecting the spatial distribution of the optical

absorbers. 3.2 Vessel Phantom

The effect of a vessel’s bleeding on the spatial and frequency
contents of generated PA signals is presented in Figs. 2(c)-2(e).
Figure 2(c) shows the distribution of hemoglobin before (0 h)
and at different time intervals after bleeding (0.1, 0.5, and 1.0 h).
Upon modeling vascular disruption, the previously localized
hemoglobin now is progressively distributed outside the vessels,
with the hemorrhaging diameter increasing as a function of time
post bleeding. Figure 2(d) shows the simulated PA signals in the
spatial domain as time progressed after the vessel damage;
the amplitude of the PA signals decreased while the length of
the PA signals increased. The decrease in the amplitude of gen-
erated PA signals is due to introducing a gradient change in the

hemoglobin content. The temporal length of the PA signals tude of the lower frequency components. These changes are

incr(?aseq W_ith ,time after bleeding flue to thej increase in the similar to the simulated results of the single vessel shown in
spatial distribution of the hemoglobin occupying a larger area Fig. 2(e).

within the interstitium.

The changes of the PA signals in the spatial domain also
translate into changes in the power spectra of the signals, as
shown in Fig. 2(e). Within the transducer bandwidth simulated
in this experiment (15 to 45 MHz), the power spectra exhibit After the single vessel is simulated, PA signals from the entire
significant changes as a result of hemoglobin diffusion into vascular tree were modeled before and after vascular bleeding.

The B-mode PA images of the prepared vessel phantom with
Sudan black dye injected into the vessel at two time points are
shown in Fig. 3(a). From the B-mode images, it is difficult to
detect the diffusion of the injected Sudan black dye from the
vessel to the gelatin matrix. This is expected as a vessel size
of 20 um is smaller than system axial resolution of 44 um.
Figure 3(b) displays the power spectra of the RF signals of
the vessel phantom at different time points. The power spectra
reveal changes in the frequency component as the dye diffuses
into the gelatin matrix with the passage of time. The changes in
the frequency components include a decrease in the amplitude of
the higher frequency components and an increase in the ampli-

3.3 Modeling Photoacoustic Signals of Vasculature
before and after Bleeding
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Fig. 3 (a) A vessel phantom imaged using the VevoLAZR injected with Sudan black dye at time equal O
and 5 min and (b) the average power spectra of the imaged vessel phantom normalized to a thin gold

reference slide.

An example of simulated tumor vasculature is shown in
Fig. 4(a). The tumor vasculatures are chaotic and dense as is
the case for experimentally measured tumor vasculatures.
The location of the transducer is denoted by the blue line for
256 elements. The beamformed images for the selected band-
width of 15 to 45 MHz are presented in Figs. 4(b) and 4(c) for
vascular trees without bleeding and 0.5 h after bleeding, respec-
tively. Although the ultrasound attenuation was not modeled in
these simulations, at this frequency range, the ultrasound attenu-
ation is higher compared with clinical ultrasound (1 to 5 MHz).
The higher frequencies will result in more negative values in the
reported spectral slope measurements due to frequency-depen-
dent attenuation.’® However, the effect of the ultrasound attenu-
ation will be similar for with and without microvessel bleeding.
The results in Fig. 4 demonstrate the challenge of detecting the
bleeding from nonresolvable microvessels in acoustic resolution
PA imaging. Since the size of the vessels is smaller than the
system resolution of 50 ym, it is difficult to extract image fea-
tures that would suggest changes in the vascular structure.'®
Visual inspection of the B-mode images shows little difference
in the images generated from the bleeding and nonbleeding
vessels.

The parameters of the vascular tree model are used to
approximate the vascular geometry of real tissue vessels.*
The vascular tree models have several assumptions. Vessels are
perfectly cylindrical segments of constant radius that bifurcate
into two daughter segments. Hence, there are no trifurcations
and no “dead-end” junctions where only one child segment
is formed. Actual vessels have a varying radius and follow
a curved trajectory.>* Another assumption is that the tissues
have only arterioles of constant oxygenation with uniformly
distributed branching angles. Tissue mechanical properties are
assumed acoustically homogeneous without any dispersion.
Finally, it is assumed that the tissues have optical properties with
uniform illumination from a single laser pulse. Regarding the
light illumination, the loss of photons with depth due to absorp-
tion and scattering affects the frequency content of the power
spectra to result in a more negative spectral slope.*’

We model bleeding effects as a function of time elapsed after
vessels have been disrupted. Spatial and frequency domain sig-
nals of simulated PA signals generated from the vascular tree
model are presented in Fig. 5. The time-domain PA signals
simulated before bleeding and 0.5 h after bleeding are shown
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in Fig. 5(a) for bandlimited signals. Again, it is difficult to dis-
tinguish between the two cases by visual inspection of the PA
signals. Figure 5(b) presents the average power spectra and the
line best fitted before bleeding and 0.5 h after bleeding. The line
fitted to the power spectra suggests a change between the two
groups and that these changes are more pronounced at higher
frequencies.

A comparison of the selected spectral parameters between
the three time points is presented in Fig. 6. These three groups
represent the analysis of PA signals before bleeding, 0.5 h after
bleeding, and 1 h after bleeding. Th e spectral slope is presented
in Fig. 6(a). The slope decreased as early as 0.5 h of bleeding
(p < 0.01). The spectral slope is correlated to the size of the PA
source. 14142 For our work, this corresponds to the hemor-
rhaging vessels. A decrease in the spectral slope at the measured
frequencies suggests an increase in the size of the PA source.
This is due to the diffusion of hemoglobin into the interstitium
that generates an overall larger PA source. The decrease in spec-
tral slope following vessel destruction has been observed in
vivo. 313 Figure 6(b) compares the y-intercept parameter, which
is related to the concentration of the optical absorbers.!®41:42
The y-intercept parameter increased as bleeding progressed.
However, these changes are not as significant as the changes to
the spectral slope analysis. Changes were detected after 1 h of
bleeding (p < 0.05). Figure 6(c) represents the MBF, which is
a dependent parameter that combines the effect of the spectral
slope and y-intercept. The results demonstrate a decrease in the
MBF parameter 0.5 h after bleeding (p < 0.01).

Spectral analysis of simulated PA signals could be used to
differentiate between vasculatures before and 0.5 h after bleed-
ing through analyzing the changes in the spectral slope param-
eter. The decrease in the spectral slope correlates to an increase
in the effective vessel diameter after bleeding due to the diffu-
sion of blood outside of the vasculature. The MBF could also be
used to detect microvessel bleeding; however, it is a dependent
variable on the spectral slope.

In this study, we modeled hemorrhaging of tumor blood ves-
sels post VDA to assess the potential of PA RF analysis for mon-
itoring this process. Other changes due to vascular bleeding
could potentially be used as a marker to monitor cancer therapy.
In future work, this could be confirmed by further simulation
accounting for the distribution of multiple chromophores. For
example, as red blood cells escape the vessels, the concentration
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Fig. 4 (a) A schematic representation of the simulated vascular tree. The blue line represents the loca-

tion of the linear array transducer considering of 256 simulated point source detectors. The beamformed
image of the vascular tree (b) without microvessel bleeding and (c) 0.5 h after microvessel bleeding.
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Fig. 5 (a) Representative PA signals acquired from simulating vascular tree without microvessel bleed-
ing and 0.5 h after microvessel bleeding. (b) The average power spectra of four different vascular trees
and the average line best fitted with its standard deviation.
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Fig. 6 Spectral parameters acquired from vascular tree model simulation. The calculated parameters are
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intact tumor vasculature, 0.5 h after bleeding and 1 h after bleeding. * Statistical significance compared
with the without bleeding group (p < 0.05).
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of deoxyhemoglobin and methemoglobin rises due to changes in
the surrounding environment.”>*** These changes can lead to
alteration in PA signals that depend on the optical wavelength.
We confined these simulations to early time points, so we would
not have to consider the new chromophores that are expected to
be created due to the oxidation of hemoglobin (such as met-
hemoglobin and hemichrome). The chromophore distribution
as a result of bleeding could also be modeled using a vascular
tree, and its effect on generated PA signals can be analyzed at
different wavelengths. Finally, additional validation of these
simulations can be performed by comparing our results with
in-vivo results obtained from a tumor mouse model treated with
different types of VDAs. Our group is currently conducting
detailed studies to examine in-vivo changes of PA spectral
parameters measured during cancer treatment. The combination
of ultrasound backscatter to monitor changes in cellular struc-
ture and PA to monitor changes in vascular structure provides
a unique approach to monitor structural changes in the most
important elements of tumors, which are cancer cells and the
tumor vasculature.*>~*

4 Conclusion

This study demonstrates how PA spectral analysis can be used in
principle to detect structural changes due to bleeding at the
micron scale. According to the simulations performed, changes
due to microvessel bleeding can be detected by quantifying
changes in the spectral slope and MBF of the power spectra
in ultrasonic resolution PA. This demonstrates a potential for
the use of PA spectral analysis for cancer treatment monitoring
and for treatments that target the vasculature. The early clinical
feedback that could be potentially obtained by detection and
quantification of microvessel bleeding may result in a signifi-
cant improvement in treatment monitoring and, eventually, out-
come. It may also result in a reduction in the reoccurrence rate of
tumors through feedback provided on the efficacy of the treat-
ment and through using bleeding as a biomarker of tumor
response.
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