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Abstract

Significance: We introduce an application of machine learning trained on optical phase features
of epithelial and mesenchymal cells to grade cancer cells’ morphologies, relevant to evaluation
of cancer phenotype in screening assays and clinical biopsies.

Aim: Our objective was to determine quantitative epithelial and mesenchymal qualities of breast
cancer cells through an unbiased, generalizable, and linear score covering the range of observed
morphologies.

Approach: Digital holographic microscopy was used to generate phase height maps of
noncancerous epithelial (Gie-No3B11) and fibroblast (human gingival) cell lines, as well as
MDA-MB-231 and MCF-7 breast cancer cell lines. Several machine learning algorithms were
evaluated as binary classifiers of the noncancerous cells that graded the cancer cells by transfer
learning.

Results: Epithelial and mesenchymal cells were classified with 96% to 100% accuracy. Breast
cancer cells had scores in between the noncancer scores, indicating both epithelial and
mesenchymal morphological qualities. The MCF-7 cells skewed toward epithelial scores, while
MDA-MB-231 cells skewed toward mesenchymal scores. Linear support vector machines
(SVMs) produced the most distinct score distributions for each cell line.

Conclusions: The proposed epithelial–mesenchymal score, derived from linear SVM learning, is
a sensitive and quantitative approach for detecting epithelial and mesenchymal characteristics of
unknown cells based on well-characterized cell lines. We establish a framework for rapid and
accurate morphological evaluation of single cells and subtle phenotypic shifts in imaged cell
populations.
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1 Introduction

Quantitative phase imaging (QPI) is a label-free optical imaging technique that measures the
phase delay introduced when a coherent laser beam travels through a thin transparent specimen,
such as cells.1 The uncorrected optical pathlength yields information about cell morphology and
geometric thickness of the specimen along its phase projection, as well as fluctuations in the
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local index of refraction.2 Reconstructed optical phase maps that result from QPI of cells
possess phase texture in the variation of pixel values within the boundary of the cell,3 quantified
through texture parameters.4 The pixel information from phase maps is relevant to cell structure
and function. For example, a cell’s refractive index can reveal its total protein concentration,5

organization, and distribution of subcellular organelles, which are distinctive for certain
biological phenotypes.6 Hence, a collection of quantitative parameters from optical phase
maps constitutes a cell type’s phase signature, providing additional information beyond the cell
shape.

Digital holographic microscopy (DHM) is one type of QPI that uses the holography principle
to determine the amplitude and phase of the diffraction wavefront7,8 and is well-suited for im-
aging biological specimens. Telecentric DHM is able to optically compensate for phase aberra-
tions introduced by an imaging objective, making the computational removal of additional
optical aberrations easier.2 Other key features of DHM include noninvasive imaging with low
power density at the specimen, high temporal resolution, and rich quantitative pixel information.
Recent applications of DHM to the assessment of living biological specimens include charac-
terization of the global morphology of confluent cell layers,9 analysis of cell proliferation and
morphology on various substrates,1,3,10 cell responses to drugs,11,12 determination of phase
features relating to cell motility,4,13 and cell classification in flow cytometry.14,15

Machine learning applications to QPI include rapid evaluation and classification of cell types
and (patho)physiological states4,14–20 and improvements in reconstructed image quality.21,22

Phase texture from pixels, shape features of adherent cells,4 and dry mass/volumetric determi-
nation of cells in liquid suspension15 are quantitative parameters that served as predictors
for binary classification of cancer and noncancerous cells. Support vector machines (SVMs)
have been particularly successful in classification of cell lines using such quantitative phase
parameters.4,15,23,24 Ensemble methods train multiple weak learners and then combine them
to obtain better predictive performance for classification. For example, the Boosting ensemble
method trains learners sequentially, focusing subsequent models on the previous models’ miss-
classifications, while the Bagging ensemble method trains learners independently. A recent study
suggested that ensemble methods could improve detection of clear cell renal cell carcinoma in
kidney disease leading to improved diagnosis and treatment.25

QPI has great potential to evaluate cells in thin sections and in cell-based screening assays.
For example, machine learning classification from QPI compared favorably to manual scoring of
the Gleason grade of prostate cancer from histology sections 26 or to conventional screening in
terms of predicting pathological features of hematological diseases.27 The use of parameters
from QPI has recently been explored to assess shifts in population distributions of cell phase
parameters, indicating altered phenotype, or to differentiate multiple bacteria species based on
their single-cell profiling capability.28,29 The effects of cell seeding density,4 exposure to anti-
cancer drugs,30,31 and other influences on cell phenotype32–34 have been robustly evaluated with
QPI. Quantitative imaging and machine learning have the potential to save time, labor, and
reduce human error in phenotypic profiling, which could help pathologists and scientists to accu-
rately detect circulating tumor cells,35 classify cancer cells,36,37 evaluate the metastatic potential
of cancer cells,38 and assess cancer drug resistance.39 Thus, machine learning-assisted QPI has
great power to aid in interpreting large-scale and high-dimensionality data from cells, potentially
enhancing cancer diagnosis and treatment.

A key aspect of cancer relevant to disease outcomes is cancer cell morphology. Many cancers
adopt either “epithelial” or “mesenchymal” morphologies, dependent on certain gene mutations,
gene expression profiles influenced by the microenvironment, and epigenetic changes.40 Indeed,
the route to transformation for many precancers involves epithelial-to-mesenchymal transition in
which cells switch from a quiescent phenotype with rounded morphology to an actively motile,
invasive phenotype with elongated morphology.41,42 Complicating this picture, some cancer cell
lines, such as MCF-7 cells, are rounded and form aggregates in vitro and yet are more invasive
than cancer cell lines with single, elongated cell morphologies.43 Another well-studied breast
cancer cell line, MDA-MB-231, adopts elongated, mesenchymal, and rounded amoeboid mor-
phologies as a bimodal invasion strategy to overcome microenvironmental barriers.44 In previous
studies, SVMs were used to classify rounded and elongated MDA-MB-231 cells3 and distin-
guish MCF-7 and MDA-MB-231 cells from noncancerous epithelial and mesenchymal cell
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lines.4 These studies raised the question of whether a universal score could be developed to grade
cells along the spectrum of epithelial to mesenchymal features.

Since results from previous studies classified cells based on textural and shape-based phase
map features, we hypothesized that a quantitative score from machine learning algorithms
trained on noncancerous epithelial and mesenchymal cell lines could be used to assign mesen-
chymal or epithelial morphological status to cancer cells. To test this hypothesis, a binary clas-
sifier of two noncancerous gingival cell lines, one epithelial and one fibroblast/mesenchymal,
was evaluated. Then the algorithm trained on noncancerous cells was applied to two cancer cell
lines of mixed morphology and an “epithelial–mesenchymal” (EM) score was derived. Results
indicate that such an approach accurately classifies epithelial and mesenchymal cell lines and
assigns cancer cells a phenotypic score on the EM axis consistent with observed morphology. We
propose this approach of deriving morphological phenotypic scores from machine learning on
archetypal cells as a generally useful and robust way to assess phenotypic characteristics of
unknown cell populations and single cells, which holds promise for future clinical and research
applications.

2 Materials and Methods

2.1 Cell Culture

Cell culture procedures were the same as in Ref. 4. For DHM imaging, cells were passaged when
reaching 80% to 90% confluence and seeded on glass-bottomed Petri dishes. Immortalized
human gingival keratinocytes (Gie-No3B11, abbreviated as GIE, derived from buccal gingiva),45

immortalized human gingival fibroblasts (HGF, derived from American Type Culture Collection
CRL-2014 primary gingival cells),46,47 and the breast cancer cell lines MCF-748 and MDA-
MB-231,49 both adenocarcinomas derived from pleural effusions, were seeded at respective
densities of 60,000; 40,000; 40,000; and 30,000 cells in a 35-mm-diameter glass-bottomed
Petri dish (Part #229632, CELLTREAT Scientific Products, Pepperell, Massachusetts). The dif-
ferent densities were estimated to produce a roughly equal number of cells per field of view after
24 h due to differences in growth rates and aggregation. Cancer cell lines were fed with
Dulbecco’s modified Eagle’s medium (Lot # SLBW4140, Sigma-Aldrich, St. Louis, Missouri),
supplemented with 10% Fetalgro (Rocky Mountain Biologicals, Missoula, Montana) and 1%
penicillin-streptomycin (Corning Inc., Corning, New York). The HGF and GIE cell lines were
cultured in Prigrow 3 and Prigrow 4, respectively (Applied Biological Materials, Inc., British
Columbia, Canada). Nutrient media for gingival cell lines were supplemented with 10% fetal
bovine serum and 1% penicillin-streptomycin. Cells adherent after 24 h were fed with 200 μl of
fresh, prewarmed media and were covered with sterile cover slips. To avoid effects on cells from
the ambient environment, each imaging session was performed over 15 to 20 min of total time
out of the incubator.

2.2 Digital Holographic Microscopy Setup, Imaging, and Preprocessing

A detailed description of the telecentric DHM setup and image processing to optically compen-
sate for phase aberrations is described in previously published studies.2,3,50 The telecentric DHM
setup (Fig. 1) is based on a bitelecentric configuration that optically cancels the bulk of the
spherical aberrations caused by the microscope objectives (MOs).51–53 The lateral resolution was
1.2 μm with 0.18 × 0.18 μm2 pixel dimensions of the lateral reconstruction. A 632-nm-
wavelength He-Ne laser was used to generate sample and reference beams that recombined
at the camera sensor plane as holograms. The holograms were captured by a 1.3-MP CMOS
camera (Lumenera Corporation, Inc., Ontario, Canada) and the reconstructed phase map was
obtained using the Fresnel reconstruction algorithm.2,54

Principal component analysis (PCA) was employed to cancel the main hologram phase aber-
rations. The following steps summarize the PCA algorithm: (1) perform singular value decom-
position to obtain the first dominant principal component (PC), (2) obtain the linear and
quadratic coefficients of the phase vectors from least square fitting of the two dominant singular
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vectors, (3) use these coefficients to compute the phase at the camera sensor, φðk; lÞ, and
(4) multiply the conjugate φ � ðk; lÞ with the hologram to obtain exp½−jφobðk; lÞ�, which is the
phase due to the biological sample without contributions of MOs and tilt. Phase height was
determined from the reconstructed optical pathlength by dividing by an assumed average index
of refraction mismatch between cells and surrounding media of Δn ¼ 1.381 − 1.337 ¼ 0.044.

2.3 Machine Learning and Epithelial–Mesenchymal Score Generation

Machine learning algorithms were evaluated and used to classify gingival cells and for transfer
learning on cancer cells to define an EM score (Fig. 2). Cells were segmented and 17 phase
parameters were extracted from each of the four cell lines using a custom-written code in
MATLAB (version R2015a), which was described previously.34 Parameters are described in
Table S1 in the Supplementary material. In total, there were 1295 cells from four different cell
lines, which were segmented throughout this study, including 332 cells of GIE, 309 cells of HGF,
307 cells of MCF-7, and 347 cells of MDA-MB-231.

Data were randomly partitioned at a ratio of 4:1 for training and testing. Training was per-
formed on parameters from 252 and 229 GIE and HGF cells, respectively, following a fivefold

Fig. 2 Machine learning was performed on 1 to 17 features derived from phase maps recon-
structed from adherent cells’ holograms. Derived features from epithelial (GIE) and mesenchymal
(HGF) cell types were used for training. For transfer learning, six PCs representing most of the
variation in cell phase maps from two untrained cancer cell lines, MCF-7 and MDA-MB-231, were
used for testing and to generate machine learning prediction scores as candidates for an EM
score.

Fig. 1 The bitelecentric DHM in transmission configuration, including MO, beamsplitters (BS),
object beam (O), reference beam (R), and CMOS camera.
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cross validation. First, the 17 phase parameter predictors were transformed into PCs using PCA,
and the PCA-transformed data were used as inputs for training following fivefold cross valida-
tion. Training and cross validation using linear SVM were performed five times each, selecting 1
to 17 PCs as predictors. To evaluate the highest prediction accuracy during training, a one-factor
repeated measures analysis of variance (ANOVA) was performed for accuracy on training per-
formance resulting in 1 to 17 PCs used, with a Dunnett’s post-hoc test to compare results to those
of one PC. Then several single and ensemble methods were trained using the same number of
PCs found to produce the highest accuracy from the linear SVM algorithm. Default settings in
MATLAB were used for each classifier, including a cost parameter of 1 for misclassification.
Accuracy was evaluated by comparing output labels to true cell line labels. These were compared
to each other using a two-tailed Student’s t-test. Results were reported as the mean ± standard
deviation. Plots of the first two PCs and receiver operating characteristic (ROC) curves for the
best single and best ensemble method classifiers were constructed.

These most accurate single and ensemble algorithms in training were exported as two models
in the MATLAB workspace using the classification Learner application. Each model was applied
to the PCA-transformed data of 307 cells from MCF-7 and 347 cells from MDA-MB-231 com-
bined with the 80 cells of GIE and 80 cells of the HGF cell lines used for testing. In addition to
the classification accuracy, SVM scores, Boosted Trees (AdaBoost) scores, Bagged Trees scores,
and SVM posterior probabilities, defined below, were also calculated. Cells from the two cancer
cell lines MDA-MB-231 and MCF-7 were assigned as either mesenchymal or epithelial based on
the binary classifier. All scores and posterior probabilities were plotted in histograms to evaluate
the performance as an EM score. In addition, SVM scores and posterior probabilities were
correlated to determine the relative sensitivity of the score and probability throughout their
respective ranges. The SVM score sj, the distance of the observation j to the decision boundary,
was calculated as55

EQ-TARGET;temp:intralink-;e001;116;436sj ¼
�
xj
sk

� 0
βþ b; (1)

where xj is the predictor data of observation j, sk ¼ 2.5196 is the linear kernel scale, β is the
vector of fitted linear coefficients, and b is the intercept of the hyperplane defining the separation.
The posterior probability PðsjÞ was calculated as56

EQ-TARGET;temp:intralink-;e002;116;353PðsjÞ ¼ 1∕ð1þ expðAsj þ BÞÞ; (2)

where A and B are the fitted slope and intercept, respectively, of the sigmoid function.
Meanwhile, the prediction score for AdaBoost, ranging from −∞ to þ∞, was defined as57

EQ-TARGET;temp:intralink-;e003;116;297fðxÞ ¼
XT
t¼1

½athtðxÞ�; (3)

where at ¼ 0.5 log½ð1 − εtÞ∕εt� are the weights of the sequential learners’ hypotheses, εt is the
weighted classification error of learner t, and htðxÞ is the prediction of learner t for prediction
data x for T total learners. The prediction scores for Boosted Trees are estimated posterior prob-
abilities:58

EQ-TARGET;temp:intralink-;e004;116;199P̂bagðcjxÞ ¼
XT
t¼1

½atP̂tðcjxÞIðt ∈ SÞ�∕
XT
t¼1

½atIðt ∈ SÞ�; (4)

where P̂tðcjxÞ is the estimated posterior probability of learner t for class c with given predictor
data x, and Iðt ∈ SÞ is 1 when learner t is of the indices S from trees used in the prediction,
otherwise it is 0.
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3 Results

3.1 Cell Morphologies from Optical Phase Maps Vary Across and Within
Cell Lines

Cell shapes from GIE [Fig. 3(a)] and HGF [Fig. 3(d)] cell lines resembled epithelial and mes-
enchymal morphologies, respectively. While GIE cells were more rounded and aggregated in
clusters, HGF cells were more elongated with lower phase signals in pixels within the cell body.
The cancer cell lines had morphologies in between GIE and HGF cells, with a more punctate
phase texture [Figs. 3(b) and 3(c)]. Cells from the MCF-7 cell line form epithelial-like clusters
with sharp cell and cluster boundaries [Fig. 3(b)]. Cells from the MDA-MB-231 cell line
[Fig. 3(c)] appeared both rounded and elongated and were typically isolated.

3.2 Classification of Epithelial and Mesenchymal Cell Lines Is Highly
Accurate

Binary classification was evaluated for multiple algorithms available in the MATLAB machine
learning and statistics toolbox, using the training set of 481 cell phase maps (n ¼ 252 from the
GIE cell line; n ¼ 229 from the HGF cell line), all PCs as predictors, with accuracies ranging
from 82% to 96% and the highest for linear SVM. Tuning the hyperparameters of box constraint
level and kernel scale did not improve training accuracy. Therefore, the number of PCs used as
predictors to linear SVM was varied from 1 to 17 (Table 1). Linear SVM with 6, 8, and 17 PCs
all produced higher training accuracies than 1 PC (ANOVA, F=47.6, p < 0.001, Dunnett’s test
versus 1 PC, p < 0.001). Six PCs were selected for use based on this statistical test and on
previous models classifying cells based on phase features, which selected six PCs as the smallest

Fig. 3 Representative DHM phase maps from living, adherent cells of (a) Gie-No3B11 (GIE),
(b) MCF-7, (c) MDA-MB-231, and (d) HGF cell lines. The cells are ordered qualitatively on an
EM axis based on cell morphology apparent in phase maps. Scale and phase bars are indicated.
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number producing no increase in area under the curve (AUC) of ROC curves. Linear SVM train-
ing resulted in an accuracy of 95.5%� 0.3%. Training using SVMs with different kernel func-
tions (quadratic, cubic, Gaussian), decision trees, or k ¼ 1 nearest-neighbor methods did not
improve accuracy. The best ensemble method classifier was Bagged Trees (Bag ensemble
method, 200 learners, and learning rate of 0.1), which did not improve the accuracy more than
the best single method (t-test, p ¼ 0.25). Boosted Trees (AdaBoost algorithm, 200 learners, 0.1
learning rate) produced lower accuracy than linear SVM, each trained on six PCs (t-test,
p < 0.01). Figures 4(a)–4(d) provide scatterplots of PCs 1 versus 2 and ROC curves for the
best performing single and ensemble methods from model training and validation.

Testing based on the linear SVM and Bagged Trees models on a naive dataset of n ¼ 80 cells
each from GIE and HGF cell lines produced error rates of 2.5% to 3.7% and 0%, respectively
[Figs. 4(e), 4(f)]. Transfer learning using the linear SVM model classified 286/307 (87.0%) of
MCF-7 cells as epithelial (GIE class) and 326/347 (93.9%) of MDA-MD-231 cells as mesen-
chymal (HGF class, data not shown). Transfer learning using the Bagged Trees model classified
262/307 (78.1%) of MCF-7 cells as epithelial (GIE class) and 329/347 (94.8%) of MDA-MD-
231 cells as mesenchymal (HGF class, data not shown). Linear SVM, Bagged Trees, and
Boosted Trees algorithms were used to calculate prediction scores for each cell of the test and
transfer datasets (Fig. 5).

3.3 Binary Epithelial–Mesenchymal Classifier Prediction Scores Separate
Cancer Cells by Morphology

The distributions of prediction scores from linear SVM as Euclidean distance from the classifying
hyperplane [Fig. 5(a)], posterior probabilities [Fig. 5(b)], Boosted Trees [Fig. 5(c)], and Bagged
Trees [Fig. 5(d)] were evaluated. Histograms of linear SVM prediction scores [Fig. 5(a), Eq. (1)]
produced the most normal-appearing distributions for test data of GIE and HGF and transfer data-
sets of MCF-7 and MDA-MB-231 cells. Posterior probabilities from SVM [Fig. 5(b), Eq. (2)] and
estimated posterior probabilities from Boosted Trees [Figs. 5(c), Eq. (3)] demonstrated excellent
separation of classes, but weighted toward 0 and 1. The Boosted Trees predictions produced
bimodal distributions of MCF-7 and MDA-MB-231 cell scores [Fig. 5(d), Eq. (4)]. Four scores

Table 1 Training accuracy of various machine learning algorithms to classify epithelial and mes-
enchymal cells.

Type Method Accuracy (%, μ� SD)

Single Linear SVM, 1 PC 93.0� 0.2

Linear SVM, 2 PCs 93.0� 0.2

Linear SVM, 4 PCs 92.8� 0.3

Linear SVM, 5 PCs 93.4� 0.6

Linear SVM, 6 PCs* 95.5� 0.3

Linear SVM, 8 PCs* 95.1� 0.3

Linear SVM, 17 PCs* 95.2� 0.6

Other SVMs, 6 PCs 95.4� 3.9

Decision trees, 6 PCs 91.6� 0.2

Nearest neighbor, 6 PCs 88.9� 3.7

Ensemble Boosted Trees, 6 PCs, AdaBoost** 94.3� 0.5

Bagged Trees, 6 PCs, Bag 95.2� 0.4

*p < 0.001, ANOVA and post-hoc Dunnett’s test versus linear SVM, 1 PC.
**p < 0.001, Student’s t -test versus linear SVM, 6 PCs.
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Fig. 5 Prediction scores for transfer learning of an EM classifier to cancer cells. Histograms of
prediction score distributions for (a) SVM predictions, (b) SVM posterior probabilities, (c) AdaBoost
predictions, and (d) estimated posterior probabilities from Boosted Trees for test datasets of
n ¼ 80 GIE cells (black dashed line) and n ¼ 80 HGF cells (black solid line), and transfer
learning datasets of n ¼ 307 MCF-7 cells (gray dashed line) and n ¼ 347 MDA-MB-231 cells
(gray solid line).

Fig. 4 Binary classifier training data (a) and (b) scatterplots of PC 1 versus 2, highlighting correctly
classified GIE (red circle) and HGF (cyan circle) cells, and misclassified cells (red and cyan x’s,
with color representing the true class). (c) and (d) ROC curves from training data, with AUC listed.
(e) and (f) Error tables from a test dataset for (e) Bagged Trees and (f) linear SVM.
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from HGF cells were outliers and were not included in the histograms. The outliers were extremely
high SVM scores more than 5.6 standard deviations away from the population mean score.
Correlations between linear SVM prediction scores versus posterior probabilities [Fig. 6(a)] and
versus estimated posterior probabilities from Bagged Trees [Fig. 6(b)] were highly nonlinear for
low and high scores of each. The correlation between linear SVM versus Boosted Trees prediction
scores [Fig. 6(c)] was linear for central scores, but nonlinear overall, with discrete levels of Boosted
Trees scores favored at low and high ends of the score range.

Cell phase maps representing the linear SVM (Fig. 7) and Boosted Trees (Fig. 8) prediction
scores closest to minima, maxima, medians, and first and third quartiles demonstrated a graded
appearance between epithelial and mesenchymal phenotypes, as represented by the cells nearest
the median score from GIE and HGF cells, respectively (also depicted in Figs. 7 and 8). The
selected cells are for the most part different (except for the MCF-7 Max and MDA-MB-231 Min,
which were the same from the two scores), but reflect a trend of more mesenchymal morphology
with higher score. Other features, including phase height (nm), area (μm2), and eccentricity, were
also included in each representative map demonstrating each cell’s shape features. Cell phase
height tended to decrease while area and eccentricity tended to increase when cells were more
mesenchymal-like. Nevertheless, each geometrical feature itself did not completely correlate in
rank order with the EM score derived from SVM [Eq. (1)] or from AdaBoost [Eq. (3)], for both
MCF-7 [Figs. 7(b), 8(b)] and MDA-MD-231 [Figs. 7(c), 8(c)] cell lines.

4 Discussion

Machine learning algorithms applied to QPI of adherent cells in culture classify cell lines in a
way useful for determining the functional phenotype on an EM axis. This study proposes a

Fig. 6 Correlation plots of linear SVM prediction scores versus (a) posterior probability scores
from SVM, (b) AdaBoost prediction scores, and (c) estimated posterior probability scores from
Bagged Trees for the dataset of 814 cells defined previously from GIE, HGF, MCF-7, and
MDA-MB-231 cell lines.
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transfer learning approach to define a graded phenotypic classification for breast cancer cells:
train a binary classifier on known epithelial and mesenchymal cells, then test on the cancer cells
of unknown phenotype, defining prediction scores for each unknown cell. The algorithms
producing score distributions of cancer cells most evenly distributed between epithelial and mes-
enchymal extremes were linear SVM and Boosted Trees (AdaBoost) scores. The SVM score, the
Euclidean distance to the linear hyperplane separating epithelial and mesenchymal classes, pro-
duced normal-appearing distributions within the cancer cell lines, easily interpretable as lying
along an EM continuum. The Boosted Trees score also produced a prediction score capable of
being interpreted as an EM continuum, but with bimodal score distributions for the cancer cell
transfer learning predictions. These prediction scores from binary classifiers serve as robust,
quantitative EM scores to define unknown cells with morphologies blended in between two
morphological extremes.

This proof-of-concept study has several strengths in design and analyses, but also weak-
nesses related to the necessarily limited dataset. Strengths include the large numbers of cells
imaged (>300 per cell line) and use of MCF-7 and MDA-MB-231 cell lines, well characterized
as being more epithelial and mesenchymal in nature, respectively. QPI using DHM provides high

Fig. 7 Phase maps of epithelial, mesenchymal, and breast cancer cells representing the median
SVM score of normal cell line (a) GIE and (d) HGF. The minimum, first quartile, median, second
quartile, and maximum SVM score for cancer cell lines of (b) MCF-7 and (c) MDA-MB-231 are
shown. SVM scores were derived from a binary classification SVM model trained on GIE and
HGF cells, then tested on breast cancer cells to generate weighted classification scores.
Phase height (φ) in nm, area (A) in μm2, and eccentricity (E ) of each representative cell generated
from phase maps are also listed in the figure near each cell.
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accuracy of cell morphological measurements as well as pixel-level textural details.3,4 One
potential concern is the consistency of the scoring results if different noncancerous epithelial
and mesenchymal cells were used instead of the gingival cells available for this study. The
smooth histogram in Fig. 5(a) and graded appearance of cells from low to high scores in
Figs. 7 and 8 increase confidence in the broad applicability of the developed scores. Still, a
classifier trained on syngeneic noncancerous cells derived from the same tissue as the cancer
would likely be more patient-specific. A classifier trained on data from many normal epithelial
and mesenchymal cell lines would arguably be more generalizable across many patients. The
bimodal nature of AdaBoost prediction scores for breast cancer cells [Fig. 5(c)] and granularity
of AdaBoost scores at low and high ends of the range [Fig. 6(b)] are a weakness of the AdaBoost
predictions compared to linear SVM prediction scores. This is explained by the iterative
AdaBoost training algorithm that trains more learners on data that is harder to classify, i.e., it
is misclassified by initial learners in the ensemble method. This results in a finer resolution of
scores in the middle of the score range, which are the harder to predict cases. The proposed EM
score requires validation with additional cancer cells of different epithelial and mesenchymal
morphologies from various breast cancer subtypes.59 Despite these limitations of the current

Fig. 8 Phase maps of epithelial, mesenchymal, and breast cancer cells representing the median
AdaBoost score of normal cell line (a) GIE and (d) HGF. The minimum, first quartile, median, sec-
ond quartile, and maximum AdaBoost score for cancer cell lines of (b) MCF-7 and (c) MDA-MB-
231 are shown. AdaBoost scores were derived from a binary classification AdaBoost model
trained on GIE and HGF cells, then tested on breast cancer cells to generate weighted classifi-
cation scores. Phase height (φ) in nm, area (A) in μm2, and eccentricity (E ) of each representative
cell generated from phase maps are also listed in the figure near each cell.
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training and test datasets, the transfer learning method proposed here quantitatively sorts indi-
vidual cells along a putative morphological axis that produces well-ranked cells by visual inspec-
tion, a feat not reproducible using any single geometrical feature to rank the cells, including
thickness, area, and eccentricity (Figs. 7 and 8).

Morphological evaluation using an EM score as proposed here could address a major issue in
histology-based diagnostics derived from cell-to-cell heterogeneity. Such heterogeneity, espe-
cially in the absence of specific molecular biomarkers, makes risk stratification, diagnosis, and
selection of treatment regimens less accurate.60 Rapid morphological classification of biopsied
cancer cell populations in slide sections using DHM could provide a first-order evaluation of
cancer heterogeneity, especially if morphology were linked to clinical behavior. Interestingly,
intravital microscopy suggests that cancer cells undergo EM transition to enable metastasis but
can rapidly revert to epithelial phenotypes once in the metastatic site, a process termed EM
plasticity.61 An EM score applied to individual cells might, therefore, be useful as an indicator
of recent, concurrent, or impending metastasis within the sampled cancer cell population. Such a
score could also track responses of the two cancer subpopulations to combined epithelial- and
mesenchymal-directed therapies, such as inhibition of Wingless/Integrated (Wnt) and Yes-asso-
ciated protein (YAP) signaling.62

Quantitative sorting of adherent cells based on morphology is of potential utility in pheno-
typic screening and basic studies linking gene expression to phenotype and functional behavior.
In phenotypic screening, DHM followed by assignment of a machine learning prediction score to
individual cells would allow the detection of subtle morphological shifts in response to various
treatments,63 a task of increasing importance in drug discovery.64 In this study, two breast cancer
cell lines, MCF-7 and MDA-MB-231, were scored on an EM axis by linear SVM, consistent
with their morphological appearance. These cell lines are well known for appearing with clus-
tered epithelial-type and single, mesenchymal-type morphologies, respectively. Mesenchymal
gene expression in MDA-MB-231 cells, including N-Cadherin, Snail, Slug, ZEB1 and 2, and
Yes-associated protein 1 (YAP1), were downregulated after lentiviral insertion of E-cadherin, a
marker of epithelial cells, which shifted the morphology of MDA-MB-231 cells to a more
rounded, clustered epithelial type.62 Similarly, MCF-7 cells made to express Snail, a transcrip-
tion factor typical of mesenchymal cells, become less round and experience an upregulation of
mesenchymal-related genes and downregulation of epithelial-related genes.65 Such basic studies
have potential impact in defining the roles of epithelial and mesenchymal phenotypes in cancer
behavior, leading to a better understanding of phenotypic transitions and plasticity in cancer. An
EM score would aid such efforts by establishing the magnitude of phenotypic shifts with a given
treatment.

An EM score has utility in interpreting qualitative morphological assignments. For example,
breast cancer cells in three-dimensional views have been classified as “stellate,” “grape-like,”
“mass,” or “round,” and unique gene expression profiles are linked to these classes.40 A single,
unified EM score applied to each of these classes may correlate with the expression of multiple
key genes, linking morphology to gene expression profiles on a quantitative basis. One exciting
future development of such an approach would be to determine the sensitivity of the EM score to
differential expression of individual genes, something best achieved by direct comparison of
parental and genetic knockout cell lines. There is some evidence that qualitative morphological
classes do not correspond to invasiveness in all cases.43 This finding is consistent with at least a
subset of genes being responsible for invasiveness but not aggregate morphology, a hypothesis
which is testable through sequential genetic knockout, EM scoring, and assessment of invasive-
ness in vitro. QPI of cancer cells in functional assays combined with classification scores such as
the proposed EM score could aid such studies. In single-cell studies, phase images of cells of
interest could guide laser-capture microdissection to link observed behavior, morphology, and
gene expression at a single cell level. Indeed, advanced machine learning techniques, including
deep learning,29 have recently been applied to isolate cell subpopulations based on unique phase
features6 and other phenotypic differences,66,37 including metastatic versus primary cancer67 and
different types of nonactivated lymphocytes.68 The phase/morphology score concept described
here could be applied to support decision-making in intelligent cell sorting systems, such as
flow cytometry with QPI,69,34 to partition cells from a heterogeneous population into distinct
morphological groups.70
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The proposed technique to generate EM scores offers greater robustness, adaptability, and
flexibility than qualitative or single-parameter morphological characterization, but requires some
interpretation. First, the SVM derived score is <0 for all cells classified as epithelial and >0 for
all cells classified as mesenchymal, whatever their true origin. Robustness of the score derives
from drawing upon multiple (six) PCs for classification and is demonstrated in Figs. 7 and 8 by
the biophysical/geometrical parameters of phase height, area, and eccentricity, which are not in
rank order for rank-ordered EM scores within the cancer cell lines. Whereas any single parameter
suffers from heterogeneity from cell to cell or may lose sensitivity to some cells or cell
responses,39 multiple training features for machine learning classification regularly achieve
higher performance than single-feature classification.18 Score adaptability stems from flexibility
in defining the training dataset—different cell lines or primary cells could be used—as well as
the cells to be scored by transfer learning. For example, the algorithm applied here to breast
cancer cells could equally be applied to any cell type with a mixture of epithelial and mesen-
chymal qualities, such as cells undergoing epithelial-to-mesenchymal or mesenchymal-to-
epithelial transition.71

5 Conclusion

This study proposes morphological scoring to sort unknown cells along a recognizable morpho-
logical axis using quantitative phase signatures and machine learning. As an example related to
cancer cell phenotypes, phase features from well-characterized epithelial and mesenchymal
cell lines were trained using SVM, producing a linear EM score applicable to cancer cells.
This proposed morphological score has various future applications in characterizing individual
cancer cells of unknown lineage and/or phenotype, and the general approach is applicable in
comparing any cells to the morphologies of well-known, well-characterized cell lines.

Disclosures

The authors declared no conflicts of interest.

Acknowledgments

This work was supported by the U.S. National Institute of Biomedical Imaging and Bioengi-
neering (Grant No. 1R03EB28017). The authors would like to thank Dr. Zaver Bhujwalla (Johns
Hopkins School of Medicine, Baltimore, Maryland) for the gift of the MDA-MB-231 cell line
and Drs. Diane Bienek and Gili Kaufman (Volpe Research Center, American Dental Association
Foundation) for the gift of HGF and Gie-No3B11 cell lines. In addition, we thank Thuc Phan
(Department of Electrical Engineering and Computer Sciences, Catholic University of America)
for assistance with data collection using digital holographic microscopy.

References

1. B. Kemper et al., “Label-free quantitative cell division monitoring of endothelial cells by
digital holographic microscopy,” J. Biomed. Opt. 15, 036009 (2010).

2. T. Nguyen et al., “Accurate quantitative phase digital holographic microscopy with single-
and multiple-wavelength telecentric and nontelecentric configurations,” Appl. Opt. 55,
5666–5683 (2016).

3. V. K. Lam et al., “Quantitative assessment of cancer cell morphology and motility using
telecentric digital holographic microscopy and machine learning,” Cytom. Part A 93(3),
334–345 (2018).

4. V. K. Lam et al., “Machine learning with optical phase signatures for phenotypic profiling
of cell lines,” Cytom. Part A 95(7), 757–768 (2019).

5. M. Born and E. Wolf, “Interference and diffraction with partially coherent light,” Chapter 13
in Principles of Optics, pp. 491–555, Pergamon Press, Elmsford, New York (1980).

Lam et al.: Quantitative scoring of epithelial and mesenchymal qualities of cancer cells. . .

Journal of Biomedical Optics 026002-13 February 2020 • Vol. 25(2)

https://doi.org/10.1117/1.3431712
https://doi.org/10.1364/AO.55.005666
https://doi.org/10.1002/cyto.a.v93.3
https://doi.org/10.1002/cyto.a.v95.7


6. P. Memmolo et al., “Identification and classification of biological micro-organisms by
holographic learning,” Proc. SPIE 11060, 110600H (2019).

7. D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
8. D. Gabor, “Microscopy by reconstructed wave fronts: II,” Proc. Phys. Soc. Sect. B 64(6),

449–469 (1951).
9. B. Kemper et al., “Quantitative phase imaging-based concepts for the analysis of global

morphology changes in confluent cell layers,” Proc. SPIE 10887, 108871M (2019).
10. N. Pavillon et al., “Early cell death detection with digital holographic microscopy,” PLoS

One 7(1), e30912 (2012).
11. R. Cao et al., “Quantitative observations on cytoskeleton changes of osteocytes at different

cell parts using digital holographic microscopy,” Biomed. Opt. Express 9(1), 72–85 (2018).
12. Y. Li et al., “Digital holographic microscopy for longitudinal volumetric imaging of growth

and treatment response in three-dimensional tumor models,” J. Biomed. Opt. 19(11),
116001 (2014).

13. D. Bettenworth et al., “Quantitative phase microscopy for evaluation of intestinal inflam-
mation and wound healing utilizing label-free biophysical markers,” Histol. Histopathol.
33(5), 417–432 (2018).

14. T. Blasi et al., “Label-free cell cycle analysis for high-throughput imaging flow cytometry,”
Nat. Commun. 7, 10256 (2016).

15. D. Roitshtain et al., “Quantitative phase microscopy spatial signatures of cancer cells,”
Cytom. Part A 91(5), 482–493 (2017).

16. Z. Han et al., “Breast cancer multi-classification from histopathological images with struc-
tured deep learning model,” Sci. Rep. 7, 4172 (2017).

17. D. A. Van Valen et al., “Deep learning automates the quantitative analysis of individual cells
in live-cell imaging experiments,” PLoS Comput. Biol. 12(11), e1005177 (2016).

18. C. L. Chen et al., “Deep learning in label-free cell classification,” Sci. Rep. 6, 21471 (2016).
19. Y. Rivenson et al., “PhaseStain: the digital staining of label-free quantitative phase micros-

copy images using deep learning,” Light Sci. Appl. 8, 23 (2019).
20. R. Li et al., “Deep learning segmentation of optical microscopy images improves 3-D

neuron reconstruction,” IEEE Trans. Med. Imaging 36(7), 1533–1541 (2017).
21. H. Wang, M. Lyu, and G. Situ, “eHoloNet: a learning-based end-to-end approach for in-line

digital holographic reconstruction,” Opt. Express 26(18), 22603–22614 (2018).
22. Y. J. Jo et al., “Quantitative phase imaging and artificial intelligence: a review,” IEEE J. Sel.

Top. Quantum Electron. 25(1), 1–14 (2018).
23. T. C. Nguyen et al., “Quantitative assessment of cancer cell morphology and movement

using telecentric digital holographic microscopy,” Proc. SPIE 10074, 100740U (2017).
24. Y. Ozaki et al., “Label-free classification of cells based on supervised machine learning of

subcellular structures,” PLoS One 14, e0211347 (2019).
25. K. H. Park et al., “Efficient ensemble methods for classification on clear cell renal cell

carcinoma clinical dataset,” Lect. Notes Comput. Sci. 10752, 235–242 (2018).
26. E. Arvaniti et al., “Automated Gleason grading of prostate cancer tissue microarrays via

deep learning,” Sci. Rep. 8 (2018).
27. G. Kim et al., “Learning-based screening of hematologic disorders using quantitative phase

imaging of individual red blood cells,” Biosens. Bioelectron. 123, 69–76 (2019).
28. N. Pavillon et al., “Noninvasive detection of macrophage activation with single-cell

resolution through machine learning,” Proc. Natl. Acad. Sci. U. S. A. 115, E2676–E2685
(2018).

29. G. Kim et al., “Rapid and label-free identification of individual bacterial pathogens exploit-
ing three-dimensional quantitative phase imaging and deep learning,” bioRxiv (2019).

30. M. Mir et al., “Highly sensitive quantitative imaging for monitoring single cancer cell
growth kinetics and drug response,” PLoS One 9, e89000 (2014).

31. B. Rappaz et al., “Digital holographic microscopy: a quantitative label-free microscopy
technique for phenotypic screening,” Comb. Chem. High Throughput Screen. 17, 80–88
(2014).

32. Y. K. Park et al., “Measurement of red blood cell mechanics during morphological changes,”
Proc. Natl. Acad. Sci. U. S. A. 107, 6731–6736 (2010).

Lam et al.: Quantitative scoring of epithelial and mesenchymal qualities of cancer cells. . .

Journal of Biomedical Optics 026002-14 February 2020 • Vol. 25(2)

https://doi.org/10.1117/12.2527484
https://doi.org/10.1038/161777a0
https://doi.org/10.1088/0370-1301/64/6/301
https://doi.org/10.1117/12.2527484
https://doi.org/10.1371/journal.pone.0030912
https://doi.org/10.1371/journal.pone.0030912
https://doi.org/10.1364/BOE.9.000072
https://doi.org/10.1117/1.JBO.19.11.116001
https://doi.org/10.14670/HH-11-937
https://doi.org/10.1038/ncomms10256
https://doi.org/10.1002/cyto.a.23100
https://doi.org/10.1038/s41598-017-04075-z
https://doi.org/10.1371/journal.pcbi.1005177
https://doi.org/10.1038/srep21471
https://doi.org/10.1038/s41377-019-0129-y
https://doi.org/10.1109/TMI.2017.2679713
https://doi.org/10.1364/OE.26.022603
https://doi.org/10.1109/JSTQE.2944
https://doi.org/10.1109/JSTQE.2944
https://doi.org/10.1117/12.2256128
https://doi.org/10.1371/journal.pone.0211347
https://doi.org/10.1007/978-3-319-75420-8_22
https://doi.org/10.1038/s41598-018-30535-1
https://doi.org/10.1016/j.bios.2018.09.068
https://doi.org/10.1073/pnas.1711872115
https://doi.org/10.1371/journal.pone.0089000
https://doi.org/10.2174/13862073113166660062
https://doi.org/10.1073/pnas.0909533107


33. K. C. M. Lee et al., “Multi-ATOM: ultrahigh-throughput single-cell quantitative phase
imaging with subcellular resolution,” J. Biophotonics 12, e201800479 (2019).

34. K. C. M. Lee et al., “Quantitative phase imaging flow cytometry for ultra-large-scale single-
cell biophysical phenotyping,” Cytom. Part A 95, 510–520 (2019).

35. D. K. Singh et al., “Label-free fingerprinting of tumor cells in bulk flow using inline digital
holographic microscopy,” Biomed. Opt. Express 8(2), 536 (2017).

36. S. Hakim, M. Yamaguchi, and F. Kimura, “Application of digital holography on diagnosis of
malignant lymphoma,” in 14th Workshop Info. Opt., 2015 (2015).

37. J. Mangal et al., “Unsupervised organization of cervical cells using bright-field and single-
shot digital holographic microscopy,” J. Biophotonics 12, e201800409 (2019).

38. V. L. Calin et al., “Evaluation of the metastatic potential of malignant cells by image
processing of digital holographic microscopy data,” FEBS Open Bio 7, 1527–1538 (2017).

39. T. Yao et al., “An optical study of drug resistance detection in endometrial cancer cells by
dynamic and quantitative phase imaging,” J. Biophotonics 12, e201800443 (2019).

40. P. A. Kenny et al., “The morphologies of breast cancer cell lines in three-dimensional assays
correlate with their profiles of gene expression,” Mol. Oncol. 1, 84–96 (2007).

41. J. P. Thiery, “Epithelial–mesenchymal transitions in tumour progression,” Nat. Rev. Cancer
2, 442–454 (2002).

42. J. Zavadil et al., “Epithelial-mesenchymal transition,” Cancer Res. 68(23), 9574–9577
(2008).

43. M. J. Ziperstein, A. Guzman, and L. J. Kaufman, “Breast cancer cell line aggregate
morphology does not predict invasive capacity,” PLoS One 10, e0139523 (2015).

44. K. Paňková et al., “The molecular mechanisms of transition between mesenchymal and
amoeboid invasiveness in tumor cells,” Cell. Mol. Life Sci. 67, 63–71 (2010).

45. S. Gröger, J. Michel, and J. Meyle, “Establishment and characterization of immortalized
human gingival keratinocyte cell lines,” J. Periodontal Res. 43, 604–614 (2008).

46. S. Vardar-Sengul et al., “Expression profile of human gingival fibroblasts induced by
interleukin-1β reveals central role of nuclear factor-kappa B in stabilizing human gingival
fibroblasts during inflammation,” J. Periodontol 80, 833–849 (2009).

47. R. P. Illeperuma et al., “Immortalized gingival fibroblasts as a cytotoxicity test model for
dental materials,” J. Mater. Sci. Mater. Med. 23, 753–762 (2012).

48. H. D. Soule et al., “A human cell line from a pleural effusion derived from a breast carci-
noma 1, 2,” J. Natl. Cancer Inst. 51, 1409–1416 (1973).

49. R. Cailleau et al., “Breast tumor cell lines from pleural effusions,” J. Natl. Cancer Inst. 53,
661–674 (1974).

50. C. Zuo et al., “Phase aberration compensation in digital holographic microscopy based on
principal component analysis,” Opt. Lett. 58, 389–397 (2013).

51. A. Doblas et al., “Accurate single-shot quantitative phase imaging of biological specimens
with telecentric digital holographic microscopy,” J. Biomed. Opt. 19, 046022 (2014).

52. E. Sánchez-Ortiga et al., “Digital holographic microscopy with pure-optical spherical phase
compensation,” J. Opt. Soc. Am. A 28, 1410–1417 (2011).

53. E. Sánchez-Ortiga et al., “Aberration compensation for objective phase curvature in phase
holographic microscopy: comment,” Opt. Lett. 39, 417 (2014).

54. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and
quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis
holograms,” Appl. Opt. 38, 6994–7001 (1999).

55. N. Cristianini and J. Shawe-Taylor, “An introduction to support vector machines and other
kernel-based learning methods,” Cambridge University Press, Cambridge (2000).

56. J. C. Platt, “Probabilistic outputs for support vector machines and comparisons to regular-
ized likelihood methods,” in Adv. Large Margin Classifiers, pp. 61–74, MIT Press,
Cambridge, Massachusetts (2000).

57. J. H. Friedman, “Greedy function approximation: a gradient boosting machine,” Ann. Stat.
29(5), 1189–1232 (2001).

58. L. Breiman, “Bagging predictors,” Mach. Learn. 24(2), 123–140 (1996).
59. X. Dai et al., “Breast cancer cell line classification and its relevance with breast tumor

subtyping,” J. Cancer 8, 3131–3141 (2017).

Lam et al.: Quantitative scoring of epithelial and mesenchymal qualities of cancer cells. . .

Journal of Biomedical Optics 026002-15 February 2020 • Vol. 25(2)

https://doi.org/10.1002/jbio.201800479
https://doi.org/10.1002/cyto.v95.5
https://doi.org/10.1364/BOE.8.000536
https://doi.org/10.1002/jbio.201800409
https://doi.org/10.1002/2211-5463.12282
https://doi.org/10.1002/jbio.201800443
https://doi.org/10.1016/j.molonc.2007.02.004
https://doi.org/10.1038/nrc822
https://doi.org/10.1158/0008-5472.CAN-08-2316
https://doi.org/10.1371/journal.pone.0139523
https://doi.org/10.1007/s00018-009-0132-1
https://doi.org/10.1111/jre.2008.43.issue-6
https://doi.org/10.1902/jop.2009.080483
https://doi.org/10.1007/s10856-011-4473-6
https://doi.org/10.1093/jnci/51.5.1409
https://doi.org/10.1093/jnci/53.3.661
https://doi.org/10.1364/ol.38.001724
https://doi.org/10.1117/1.JBO.19.4.046022
https://doi.org/10.1364/JOSAA.28.001410
https://doi.org/10.1364/OL.39.000417
https://doi.org/10.1364/AO.38.006994
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1023/A:1018054314350
https://doi.org/10.7150/jca.18457


60. G. R. Sant, K. B. Knopf, and D. M. Albala, “Live-single-cell phenotypic cancer biomarkers-
future role in precision oncology?,” NPJ Precis. Oncol. 1, 21 (2017).

61. E. Beerling et al., “Plasticity between epithelial and mesenchymal states unlinks EMT from
metastasis-enhancing stem cell capacity,” Cell Rep. 14, 2281–2288 (2016).

62. A. Sulaiman et al., “Dual inhibition of Wnt and Yes-associated protein signaling retards
the growth of triple-negative breast cancer in both mesenchymal and epithelial states,”
Mol. Oncol. 12, 423–440 (2018).

63. A. V. Belashov et al., “Quantitative assessment of changes in cellular morphology at photo-
dynamic treatment in vitro by means of digital holographic microscopy,” Biomed. Opt.
Express 10(10), 4975 (2019).

64. W. Zheng, N. Thorne, and J. C. McKew, “Phenotypic screens as a renewed approach for
drug discovery,” Drug Discov. Today 18, 1067–1073 (2013).

65. R. Mezencev et al., “Snail-induced epithelial-to-mesenchymal transition of MCF-7 breast
cancer cells: systems analysis of molecular changes and their effect on radiation and drug
sensitivity,” BMC Cancer 16, 236 (2016).

66. C. Brasko et al., “Intelligent image-based in situ single-cell isolation,” Nat. Commun. 9, 226
(2018).

67. M. Rubin et al., “TOP-GAN: Stain-free cancer cell classification using deep learning with
a small training set,” Med. Image Anal. 57, 176–185 (2019).

68. J. Yoon et al., “Identification of non-activated lymphocytes using three-dimensional refrac-
tive index tomography and machine learning,” Sci. Rep. 7, 6654 (2017).

69. J. Min et al., “Quantitative phase imaging of cells in a flow cytometry arrangement utilizing
Michelson interferometer-based off-axis digital holographic microscopy,” J. Biophotonics
12, e201900085 (2019).

70. N. Nitta et al., “Intelligent image-activated cell sorting,” Cell 175, 266–276.e13 (2018).
71. M. A. Nieto, “The ins and outs of the epithelial to mesenchymal transition in health and

disease,” Annu. Rev. Cell Dev. Biol. 27, 347–376 (2011).

Van K. Lam received her MS degree in biomedical engineering from the Catholic University of
America, Washington DC, in 2017. Currently, she is pursuing her PhD in the optics and tissue
engineering. Her research interest focuses on optical imaging techniques and machine learning
applications to classify cancer cells and assess cancer invasiveness and the extracellular matrices.
She is a member of OSA, SPIE, and BMES.

Thanh Nguyen is currently a postdoctoral researcher in the EECS department at the Catholic
University of America and a science collaborator at NASA Goddard Space Flight Center. He
received his MS degree in electrical engineering in 2013 and completed his PhD in 2018. His
research interests include two-dimensional/three-dimensional imaging and deep learning. He is a
reviewer for Light: Science & Applications, Applied Optics, Optics Express, Optics Letters, and
IEEE. He is a member of OSA and SPIE.

Vy Bui received her BS and MS degrees in EECS from the Catholic University of America,
Washington DC, in 2012 and 2014, and is currently pursuing her PhD in electrical engineering.
She has been working on medical image computing research at the Cardiovascular CT
Laboratory at the National Heart, Lung, and Blood Institute since 2016. Her research interests
include image processing, computer vision, and deep learning for medical and biomedical image
analysis.

Byung Min Chung is currently an assistant professor in the biology department at the Catholic
University of America. His laboratory is studying molecular mechanisms underlying breast
cancer pathogenesis to identify innovative and effective therapeutic targets and strategies. The
study uses human cancer cells to characterize the role of a cytoskeletal protein, keratin 19 (K19),
in cell cycle progression. To address this, multidisciplinary approaches, well-established, and
cutting-edge techniques in molecular and cell biology, biochemistry, and biophysics are involved.

Lin‐Ching Chang received her DSc degree in computer science from George Washington
University in 1998. She is an associate professor in the Department of Electrical Engineering

Lam et al.: Quantitative scoring of epithelial and mesenchymal qualities of cancer cells. . .

Journal of Biomedical Optics 026002-16 February 2020 • Vol. 25(2)

https://doi.org/10.1038/s41698-017-0025-y
https://doi.org/10.1016/j.celrep.2016.02.034
https://doi.org/10.1002/mol2.2018.12.issue-4
https://doi.org/10.1364/BOE.10.004975
https://doi.org/10.1364/BOE.10.004975
https://doi.org/10.1016/j.drudis.2013.07.001
https://doi.org/10.1186/s12885-016-2274-5
https://doi.org/10.1038/s41467-017-02628-4
https://doi.org/10.1016/j.media.2019.06.014
https://doi.org/10.1038/s41598-017-06311-y
https://doi.org/10.1002/jbio.201900085
https://doi.org/10.1016/j.cell.2018.08.028
https://doi.org/10.1146/annurev-cellbio-092910-154036


and Computer Science and the director of the Data Analytics Program at the Catholic University
of America. Prior to that, she was an IRTA postdoctoral fellow at NIH working on computational
neuroscience projects. Her main research interests include machine learning, data analytics,
computer vision, and medical informatics.

George Nehmetallah is currently an associate professor in the EECS department at the Catholic
University of America. He has served as a PI and a co-PI for several projects funded by NSF,
NASA, Air Force, Army, and DARPA, and was one of the 11 recipients awarded the Army SBIR
Achievement in 2011. His research interests are in 3-D imaging, digital holography, spectros-
copy, and metamaterials. He is a senior member of OSA and SPIE.

Christopher B. Raub is currently an assistant professor in biomedical engineering at the
Catholic University of America, with research interests in the use of endogenous optical signals
to understand interactions between cells and the tissue microenvironment. Currently, he is a PI
on a project funded by NIBIB to assess microenvironmental determinants of cancer cell inva-
siveness using quantitative phase and polarized light microscopy. He is a member of BMES and
the Orthopedic Research Society.

Lam et al.: Quantitative scoring of epithelial and mesenchymal qualities of cancer cells. . .

Journal of Biomedical Optics 026002-17 February 2020 • Vol. 25(2)


