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Abstract

Significance: Single-molecule localization-based super-resolution microscopy has enabled the
imaging of microscopic objects beyond the diffraction limit. However, this technique is limited
by the requirements of imaging an extremely large number of frames of biological samples to
generate a super-resolution image, thus requiring a longer acquisition time. Additionally, the
processing of such a large image sequence leads to longer data processing time. Therefore, accel-
erating image acquisition and processing in single-molecule localization microscopy (SMLM)
has been of perennial interest.

Aim: To accelerate three-dimensional (3D) SMLM imaging by leveraging a computational
approach without compromising the resolution.

Approach: We used blind sparse inpainting to reconstruct high-density 3D images from
low-density ones. The low-density images are generated using much fewer frames than usually
needed, thus requiring a shorter acquisition and processing time. Therefore, our technique will
accelerate 3D SMLMwithout changing the existing standard SMLM hardware system and label-
ing protocol.

Results: The performance of the blind sparse inpainting was evaluated on both simulation and
experimental datasets. Superior reconstruction results of 3D SMLM images using up to 10-fold
fewer frames in simulation and up to 50-fold fewer frames in experimental data were achieved.

Conclusions: We demonstrate the feasibility of fast 3D SMLM imaging leveraging a computa-
tional approach to reduce the number of acquired frames. We anticipate our technique will enable
future real-time live-cell 3D imaging to investigate complex nanoscopic biological structures and
their functions.
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1 Introduction

Single-molecule localization microscopy (SMLM) such as (direct) stochastic optical recon-
struction microscopy [(d)STORM],1,2 (fluorescence) photoactivated localization microscopy
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[(f)PALM],3,4 and other variants5–8 have extended the imaging resolution of conventional optical
fluorescence microscopy beyond the diffraction limit (∼250 nm). In these methods, a random
and sparse subset of fluorophores in the sample is imaged in each diffraction-limited image
frame, whereas a large number of such frames are obtained sequentially. Then, the detected
individual fluorophores in each frame are precisely localized, and finally, all the localization
positions from these frames are assembled together to generate the super-resolution image.
Three-dimensional (3D) SMLM9–16 requires additional axial (z axis) information, which is
obtained by using z dependent point spread function (PSF).17 Optically engineered PSFs such as
astigmatic,9 double-helix,18 biplane,19 interferometric,20 airy-beam,21 and tetrapod12 are commonly
used in existing 3D SMLM imaging to encode the axial information of blinking fluorescent
molecules. PSFs shapes are generally engineered via the introduction of optical elements such as
cylindrical lens,9 phase mask,22 or deformable mirror15 in the imaging pathway of the microscope.
In both 2D and 3D SMLM imaging, to achieve sufficient dense localizations to reveal biological
samples’ details, a large number of sequential diffraction-limited frames (typically >104) are
needed, suggesting a long acquisition time. Such slow imaging makes potential live-cell and
high-throughput imaging more challenging. Practically, the acquisition of such long frame
sequences also results in the degradation of image quality due to the dyes’ photobleaching.
Furthermore, the processing of such a large number of image frames requires considerable
processing times.23 Therefore, a faster SMLM technique is always desirable.

Several approaches have been reported to accelerate the imaging and data processing time of
SMLM. One of them is to increase the fluorophore blinking kinetics using a high-power laser
and to use a high-speed camera (with higher frames per second) to capture those fast blinking
single-molecule events.10,24 Huang et al.25 achieved video-rate SMLM using scientific comple-
mentary metal-oxide-semiconductor (sCMOS) cameras. These acceleration methods provide
faster imaging at the cost of image quality degradation.10,26 Specifically, high-excitation laser
intensity and fast detection decreased the photon count per localization, resulting in deterioration
of localization precision and resolution.26 Another approach is to increase the number of active
fluorophores per frame.27,28 However, the high activation density causes fluorescent spots to
overlap in the diffraction-limited images, making it more difficult to precisely localize the
fluorophores.28 Despite this challenge, most of the existing techniques29–31 use higher molecular
density per frame to increase the imaging speed. Recently, deep learning has been used to accel-
erate the SMLM methods. Typically, deep learning is implemented to precisely localize the 2D
or 3D position (or color separation in case of multicolor imaging) of blinking single-molecules
PSFs in each frame.32–39 These methods ultimately accelerate the data processing time of SMLM
methods, but still require a large number of frames. Further, deep learning is leveraged by
Ouyang et al.40 to accelerate 2D SMLM and by Gaire et al.41 to accelerate 2D multicolor spectro-
scopic SMLM using very few frames. However, the limitation of a deep learning method is that it
requires a large quantity of training data with similar structures.

Here, we present a computational approach to accelerate 3D SMLM imaging. The exper-
imental setup, data acquisition procedure, and localization methods remain the same as those
of standard 3D SMLM methods, except that very few diffraction-limited frames are acquired,
which will reduce the acquisition time and ultimately accelerate imaging speed. Further, the data
processing time will also be reduced accordingly. For the standard 3D SMLM method, the final
image rendered from very few frames is sparse and provides less information to extract the bio-
logical sample’s fine structures. Our approach can recover those unresolved structures in the
sparse image with low emitter densities and reconstruct the high-quality 3D super-resolution
image. The high-density estimation of 2D SMLM imaging using the blind sparse inpainting
has been previously reported in detail.42 Here, we extended it to accelerate 3D SMLM imaging
by introducing a sparsifying transform appropriate for the 3D structure. In our previous work,
high-density 2D SMLM images were reconstructed by solving an l1 minimization problem using
the alternating direction method of multipliers (ADMM)43 with curvelet transform44 as the spar-
sifying transform. Here, we also use ADMM but with combined curvelet transform and an addi-
tional total variation (TV) regularization for the depth direction. We confirm the efficacy of the
proposed algorithm using both simulated and experimental 3D SMLM datasets. The preliminary
results of this article were reported in Ref. 45. This expanded article includes additional sim-
ulation, experimental, and quantitative evaluation results and their analysis.
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2 Reconstruction Approach

In standard 3D SMLM, a large number of diffraction-limited frames (suppose N frames) are
imaged with a total acquisition time of NΔt, where Δt is the time to acquire a single frame
(typically 10 to 30 ms) and processed to produce a high-density 3D super-resolution image.
A smaller number of frames (suppose Q frames and Q ≪ N) with a very short acquisition time
of QΔt will generate a low-density 3D image (Fig. 1). Our goal is to reduce the acquisition time
by reconstructing the high-density 3D super-resolution image using a low-density 3D image
acquired using fewer frames, which is sparse and incomplete. For reconstruction, we need
to restore the unknown fluorophore localization positions based on the available fluorophore
localization points on the low-density 3D image. Thus, the restoration problem can be formu-
lated as an image inpainting task aiming to restore the mission regions of the corrupted image
and reconstruct the original image.

Mathematically, the relationship between the vectorized low-density 3D image xQ from the
localization emitters acquired inQ frames and the desired high-density 3D image vector x can be
modeled as

EQ-TARGET;temp:intralink-;e001;116;548xQ ¼ PQx; (1)

where PQ is a diagonal matrix with either element 1, for the acquired location or 0, for the
missing location. To solve Eq. (1), we first need to estimate the unknown measurement matrix
PQ (called “blind”) based on the low-density 3D image and then reconstruct x from xQ. The
estimation of PQ is challenging in the sense that a zero-valued pixel in xQ can be background
without any fluorophore or those with fluorophore but not detected in the acquired Q frames.
The locations of fluorescence molecules captured in Q frames are determined by performing
hard-thresholding on the low-density image xQ.

After PQ is obtained, x can be estimated from xQ, which is still nontrivial because of infinite
possible solutions. Prior information has to be exploited as a constraint to obtain a unique recon-
struction with good fidelity to the true structures. Here, we reconstruct the desired high-density
3D image by employing sparseness as an image prior. Specifically, the high-density 3D image is
reconstructed by solving the following unconstrained minimization problem

EQ-TARGET;temp:intralink-;e002;116;368min
x

λ1kPQx − xQk22 þ kΦxk1 þ λ2TVðxÞ; (2)

where k · k1 and k · k2 represent l1 and l2 norms, respectively, λ1 and λ2 are the weight param-
eter and regularization parameter, respectively, Φ represents a sparsifying transform, and TVð·Þ
is a total variation regularization. The first term enforces data consistency, the second term

Fig. 1 Comparison of blind sparse inpainting method with the existing 3D SMLM method. 3D
super-resolution image in standard SMLM is obtained by imaging and processing a large number
of diffraction-limited single-molecule frames (suppose N frames). The proposed method uses very
few diffraction-limited frames (suppose Q frames and Q ≪ N), which results in a low-density 3D
image. The high-density 3D image is then reconstructed using blind sparse inpainting.
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enforces the sparsity in the transform domain, and the third term promotes the piecewise smooth-
ness of the image.

The choice of sparsifying transform depends on the image content and plays a crucial role in
image reconstruction. Many biological structures, such as microtubules, are of anisotropic curve-
like nature. Therefore, we use the curvelet transform as a sparsifying transform in the lateral
plane. It provides sparsity and excellent directional sensitivity and anisotropy. Thus, curvelet
transform can efficiently characterize anisotropic features such as curves, edges, and arcs.46

The discrete curvelet transform was implemented using CurveLab47 with curvelets via wrap-
ping approach. It includes four steps: 2D fast Fourier transform (FFT) , windowing, frequency
wrapping, and 2D inverse FFT.44 TV regularization is used in the depth direction only. TV is
defined as TVðxÞ ¼ kGxk1, where G is the first-order finite-difference operator along the depth
direction and k · k1 denotes l1 norm. More detail about the optimization algorithm is in the next
section.

3 Optimization Algorithm

The convex optimization problem of Eq. (2) is a standard l1 minimization problem. It can be
solved using efficient approaches such as variable splitting and augmented Lagrangian method
(ALM).48,49 In this paper, we are using a specific variation of ALM called ADMM.43 We first
introduce the auxiliary variable d ¼ Φx and e ¼ Gx in Eq. (2) to decouple the l1 terms from
other parts and obtain the following equivalent form

EQ-TARGET;temp:intralink-;e003;116;477min
x

λ1kPQx − xQk22 þ kdk1 þ λ2kek1 s:t: Φx ¼ d and Gx ¼ e: (3)

The scaled form of the augmented Lagrangian function (ALF) of Eq. (3) can be
written as

EQ-TARGET;temp:intralink-;e004;116;415

Lðx; d; e; u; vÞ ¼ λ1kPQx − xQk22 þ kdk1 þ λ2kek1
þ ρ

2
kΦx − dþ uk22 þ

μ

2
kGx − eþ vk22; (4)

where u and v are Lagrangian multipliers representing scaled dual variables. Similarly, ρ and μ
are the penalty parameters. The ADMM iteration scheme will be

EQ-TARGET;temp:intralink-;e005;116;335xkþ1 ¼ argmin
x

λ1kPQx − xQk22 þ
ρ

2
kΦx − dk þ ukk22 þ

μ

2
kGx − ek þ vkk22; (5)

EQ-TARGET;temp:intralink-;e006;116;284dkþ1 ¼ argmin
d

kdk1 þ
ρ

2
kΦxkþ1 − dþ ukk22; (6)

EQ-TARGET;temp:intralink-;e007;116;254ekþ1 ¼ argmin
e

λ2kek1 þ
μ

2
kGxkþ1 − eþ vkk22; (7)

EQ-TARGET;temp:intralink-;e008;116;223ukþ1 ¼ uk þΦxkþ1 − dkþ1; (8)

EQ-TARGET;temp:intralink-;e009;116;201vkþ1 ¼ vk þGxkþ1 − ekþ1: (9)

The x-subproblem has a closed-form solution

EQ-TARGET;temp:intralink-;e010;116;177xkþ1 ¼ Bð2λ1PT
QxQ þ ρΦHðdk − ukÞ þ μGTðek − vkÞÞ; (10)

where B ¼ ð2λ1PT
QPQ þ ρIþ μIÞ−1. The superscripts H and T denote the Hermitian transpose

and the transpose of a matrix, respectively. The optimum values of d-subproblem and
e-subproblem are obtained through the element-wise shrinkage operator48

EQ-TARGET;temp:intralink-;e011;116;106dkþ1 ¼ shrink

�
Φxkþ1 þ uk;

1

ρ

�
; (11)
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EQ-TARGET;temp:intralink-;e012;116;430ekþ1 ¼ shrink

�
Gxkþ1 − vk;

λ2
μ

�
; (12)

where shrinkð:Þ is defined as

EQ-TARGET;temp:intralink-;e013;116;382shrinkðx; γÞ ¼ x
jxj maxðjxj − γ; 0Þ: (13)

The algorithm terminates when the predefined maximum number of iteration is reached.
The proposed ADMM optimization algorithm for blind sparse inpainting is summarized in
Algorithm 1. The algorithm was implemented in MATLAB® R2018a.

All the parameters in our implementation were tuned heuristically, and the best results
obtained from the quantitative evaluations are presented. In general, the weight parameter λ1
balances the sparsity constraint/smoothness and data consistency. Typically, smaller λ1 weights
the smoother image, while large λ1 penalizes data consistency more (preserving more acquired
information). Such control of sparsity constraint and data consistency in the lateral direction is
also affected by the value of ρ. Similarly, the smoothness and data consistency in the axial direc-
tion is also controlled by the parameter μ. Due to the variation of intensity and density in each
image, a single value of these parameters may not work for all images. To simplify the parameter-
tuning process of all images, the maximum intensity was truncated to 255, and then intensity
values were rescaled to the interval of [0, 1]. In our implementation, we used the value of λ1 in the
range of 10 to 80, and ρ in the range of 10 to 150. Similarly, λ2 ¼ 10−6 and μ ¼ 0.1∕0.01 were
used. The results are insensitive to a small change in the values of these parameters.

4 Results

4.1 Simulation Results

To demonstrate the performance of blind sparse inpainting reconstruction, we used two sets of
simulated localization data.

Algorithm 1

Input: xQ -low-density 3D image.

λ1, λ2-weight and TV regularization parameters.

ρ, μ-penalty parameters.

Φ-sparsifying transform operator.

n-maximum number of iterations (stopping criteria).

Output: x-high-density 3D image.

Initialization: d0 ¼ 0, e0 ¼ 0, u0 ¼ 0, v0 ¼ 0, count ¼ 1.

for count ¼ 1∶n do

Solve x-subproblem using Eq. (10).

Solve d-subproblem using Eq. (11).

Solve e-subproblem using Eq. (12).

Update u using Eq. (8).

Update v using Eq. (9).

End for.

Gaire et al.: Accelerating 3D single-molecule localization microscopy using blind sparse inpainting

Journal of Biomedical Optics 026501-5 February 2021 • Vol. 26(2)



For the first one, we generated a simulated 3D SMLM image in the shape of a knot as the
“ground-truth” specimen. The knot had a volume of dimension 4.02 × 4.02 × 0.18 μm3. The
localization list was simulated by randomly selecting some locations in the knot to mimic
the activated molecules with an activation density of approximately ten molecules per frame
(0.62 molecules∕μm2 per frame).16 We directly recorded the localized coordinates ðx; y; zÞ and
their intensities of blinking molecules in each camera frame. Since the localization emitters were
directly obtained from the true image, there were no localization errors or background noise. The
localization list was then used to render the 3D image. The increasing density images can be
synthesized by combining these localization points using an increasing number of frames. The
resulting high-density super-resolution 3D image (Video 1) has lateral and axial resolutions of
∼20 and ∼17 nm, respectively [Figs. 2(e) and 2(g)]. We used fewer frames to generate the low-
density 3D image and then applied our algorithm to reconstruct the high-density 3D image.

To reconstruct the high-density 3D image from the low-density image, we constructed 22
z-slices of the low-density 3D image by grouping the localization data in the z axis with thick-
ness 8 nm. ThunderSTORM,50 an open-source SMLM data analysis plugin for Fiji,51 was used to
computationally render the z-stack with the 3D simulated localization list as an input. Due to
simultaneous reconstruction of multiple z-slices (lateral and axial direction), the reconstruction
of the 3D SMLM image is much more complicated compared to the reconstruction of the 2D
SMLM image as in Ref. 42. The result in Fig. 2(b) shows that the blind sparse inpainting recon-
struction of the low-density image rendered with Q ¼ 1000 frames and having 15,910 locali-
zation points significantly improved the density and is visually equivalent to the ground-truth
[Fig. 2(c)] rendered with N ¼ 10;000 frames with a total of 96,203 fluorophore localization
points. The 3D projection of Figs. 2(a)–2(c) is presented in Video 2. Additionally, the volume
visualization of the simulated low-density, blind-inpainting reconstruction, and ground-truth 3D
images using the Volume Viewer52 plugin in Fiji is shown in Fig. 3. Most of the incomplete and

Fig. 2 Blind sparse inpainting reconstruction of simulated 3D SMLM image. (a) Low-density image
using 1000 frames; (b) blind inpainting reconstruction; and (c) high-density ground-truth image
using 10,000 frames (also see Video 1 and Video 2). The right panel in each image shows
a ðy; zÞ slice at the position indicated by the white dashed line. The color bar shows the depth
of z. Pixel size: 8 nm. Scale bars: 0.5 μm. (d) and (e) Intensity profile and FWHM at the white
line segment shown in the (b) reconstructed image and (c) the ground-truth image, respectively.
(f) and (g) Intensity profile and FWHM along the line segment (not shown) on z direction at
white boxes on ðy; zÞ slices in the images (b) and (c), respectively. Black dots in the intensity
profiles are measured intensities, and blue curves are fitted Gaussian functions, with standard
deviation σ and FWHM (double orange arrow) as indicated [Video 1, MP4, 5.5 MB [URL:
https://doi.org/10.1117/1.JBO.26.2.026501.1]; Video 2, MP4, 4 MB https://doi.org/10.1117/
1.JBO.26.2.026501.2].
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rough curvilinear structures due to reduced localization points in the low-density image are
reconstructed almost perfectly, giving complete and continuous filament structures with an
excellent agreement with the ground-truth image. At some positions, where the input low-
density image has very little information available, the reconstruction still deviates from the
ground-truth [red arrows in Figs. 2(b) and 3(b)]. Such errors can be reduced by increasing the
frame numbers (thereby the number of localization points), but at the cost of reduced acceleration.

The reconstructed image resolution was evaluated using the full width at half maximum
(FWHM) of the intensity profile. The FWHM values along the lateral and axial direction for
the reconstructed image are shown in Figs. 2(d) and 2(f), respectively. Similarly, Figs. 2(e) and
2(g), respectively, show FWHM values of the ground-truth image in lateral and axial directions.
The intensity profile in lateral direction was taken along the white line segments in Figs. 2(b) and
2(c). Similarly, line segments (not shown) along the z direction at the white boxes on ðy; zÞ slice
of Figs. 2(b) and 2(c) were used to obtain axial intensity profiles. The black dots in the intensity
profiles are measured intensities, and the blue curves are fitted Gaussian functions, with standard
deviation σ and FWHM (double orange arrow) as indicated. The FWHM values were calculated
using FWHM ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p
σ ≈ 2.355σ. The FWHM values of the reconstructed image, for both

lateral and axial directions, are similar (≈2.5 nm higher) to those of the ground-truth image,
indicating the inpainted reconstruction is able to preserve the resolution of a 3D structure.
Additionally, we perform the quantitative evaluation of the reconstruction by calculating the
root-mean-squared error (RMSE) between the reconstructed image and the ground-truth image
and it is shown in Fig. 4. The RMSE values for each reconstruction are the average RMSE values
from all the slices. Since the localization list was generated randomly, we conducted 10 sim-
ulations and calculated the average RMSE of each reconstruction for the different number of
frames. The unit of the RMSE is the same as the intensity (photons) of the image. The curve
[Fig. 4] shows significant improvements in the reconstruction with>800 frames, suggesting that
increasing frames improve the fidelity of reconstructed structures. The RMSE value for the
reconstruction of Fig. 2 using 1000 frames was 0.0748.

Fig. 3 Volume visualization of the simulated 3D image. (a) Low-density; (b) reconstructed; and
(c) ground-truth images, respectively. The low-density image was rendered using 1000 frames
and the ground-truth image was obtained using 10,000 frames.

Fig. 4 Quantitative evaluation of knot simulation results using RMSE for the different number of
frames.
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In the experimental condition, localization microscopy images are corrupted by noise sources
such as false detection from the background noise due to unbound or out of focus light or unspe-
cific binding of antibodies.40 To test our method’s performance for realistic simulation condi-
tions, we used publicly available realistic 3D simulation data of microtubules from the École
Polytechnique Fédérale de Lausanne (EPFL) 3D SMLM software Benchmarking.53 The Alexa
647 labeled STORM data “MT0.N1.LD” consists of 19,996 frames with a molecule density of
0.2 molecules per μm2. We adopted the 3D-Double Helix datasets and used SMLocalizer54 to
process diffraction-limited frames. Once the localization list was obtained, we used 5000 frames
to generate the low-density 3D image, as shown in Fig. 5(a). To reconstruct the 3D high-density
image from the low-density image, we constructed 90 z-slices of the low-density 3D image by
grouping the localization data in the z axis with a thickness of 12.5 nm. The field of view (FOV)
of the images in Fig. 5 was 5.62 × 5.15 μm2. The overall axial range was 1.125 μm. Figure 5(b)
shows reconstruction using 5000 frames, having much smoother and improved density in both
lateral and axial directions. The result is comparable to the high-density image rendered using all
frames [Fig. 5(c)]. The ground-truth image is shown in Fig. 5(d). The RMSE values (average of
all slices) of the low-density, reconstructed, and high-density images were 0.0167, 0.0144, and
0.0202, respectively. The RMSE values show that our reconstruction has much less deviation
from the ground-truth image than the high-density image obtained using 19,996 frames.

4.2 Experimental Results

To demonstrate the performance of blind sparse inpainting reconstruction for real 3D SMLM
images, we used publicly available localization lists of two microtubules image data and one
mitochondrial image data.

The first data set was from the EPFL SMLM software benchmarking.53 The details about
sample preparation and microscopy setup of the data can be found in Ref. 55. In brief, micro-
tubules in U-2 OS cells were labeled with anti-alpha tubulin primary and Alexa Fluor 647-
coupled secondary antibodies. The diffraction-limited frames (with an exposure time of
15 ms) were imaged using the optical setup of dSTORM with a cylindrical lens. We used the
wobble and drift corrected “Tubulin-A647-3D” localization list obtained from 112,683 frames
and processed using Super-resolution Microscopy Analysis Platform (SMAP)-2018.56 Since the
localization list was already available, we did not process the diffraction-limited frame data, but
instead directly used them. The isolated localization points due to background noise were filtered
using density filtering. When all 112,683 frames with about 1.7 million localization points were
used, we obtained a high-density super-resolution 3D image as a reference image [Fig. 6(c)]. The
low-density image [Fig. 6(a)] was synthesized using 2254 frames, i.e., 50-fold fewer frames,
with about 34 thousand localization points from the same localization list data. To reconstruct
the 3D high-density image from the low-density image, we constructed 23 z-slices of the low-
density 3D image with FOVof 37.5 × 33.4 μm2 by grouping the localization list data in z axis
with a thickness of 40 nm. The overall axial range was 920 nm. The microtubules filaments could
be seen in the low-density image, but structural details were hard to discern. To reconstruct the

Fig. 5 Blind sparse inpainting reconstruction result of realistic simulation data MT0.N1.LD. The
(a) low-density; (b) reconstructed; (c) high-density; and (d) the ground-truth super-resolution
3D image with color indicating the depth of z. The low-density image was rendered using
5000 frames and the high-density image was obtained using 19,996 frames. Pixel size: 12.5 nm.
Scale bars: 0.5 μm.
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high-density 3D image, our blind sparse inpainting algorithm was applied to the low-density 3D
image. The reconstructed image is shown in Fig. 6(b). The color in Figs. 6(a)–6(c) indicates the
depth in the z direction. Visual observation shows that blind sparse inpainting reconstruction
significantly improves the localization density of the low-density image. The microtubules
filament structures are much denser and more clearly revealed in the reconstruction.
Additionally, reconstruction for a region of interest (ROI) (12 × 12 μm2) of the same data set
with much smaller pixel size (24 nm) and z-slice width (Δz ¼ 25 nm) is shown in Fig. 7. The
superior reconstruction result shows much denser and smoother microtubules structures in both
lateral and axial directions.

For the quantitative evaluation of the reconstructed images of experimental data, we used the
multiscale structural similarity index (MS-SSIM),57 a perceptually motivated metric, between the
reference high-density image and the reconstructed image. Since the ground-truth was not avail-
able for the experimental data, the high-density 3D images rendered with all available frames
were used as reference images. It is also worth noting that this reference high-density image still
might deviate from the ground-truth (as seen in Sec. 4.1). Thus, the RMSE with reference image
is not a proper metric for the quantitative evaluation of reconstruction as the pixel value differ-
ence can be large even for perfect reconstruction.42 Thus, we used MS-SSIM to evaluate the
reconstruction capability to capture the structural information along with the slices in the refer-
ence image of experimental data sets. The MS-SSIM index has a scale between 0 and 1, with 1
being a perfect match with the reference image. The higher MS-SSIM value indicates a better
match of structural information. Figure 8 shows the improvement in the MS-SSIM index of the

Fig. 6 Blind sparse inpainting reconstruction results of Tubulin-A647-3D data. The (a) low-density;
(b) reconstructed; and (c) high-density super-resolution 3D image with color indicating the depth of
z. The low-density image was rendered using 2254 frames and the high-density image was
obtained using 112,683 frames. Pixel size: 40 nm. Scale bars: 3 μm.

Fig. 7 Blind sparse inpainting reconstruction results of an ROI of Tubulin-A647-3D data. The (a)
low-density; (b) reconstructed; and (c) high-density super-resolution 3D image with color indicating
the depth of z. ðx; zÞ and ðy; zÞ views of the regions enclosed by the white box are also shown.
Pixel size: 24 nm. Scale bars: 1.5 μm.

Gaire et al.: Accelerating 3D single-molecule localization microscopy using blind sparse inpainting

Journal of Biomedical Optics 026501-9 February 2021 • Vol. 26(2)



slices of the reconstructed 3D image [Fig. 6(b)] compared to that of the input low-density 3D
image [Fig. 6(a)]. It demonstrates that our method is capable of recovering the structures of
microtubules with high similarities to the reference high-density image. The MS-SSIM index
of the edge slices (slices 1 to 3, and 21 to 23) are still low because of having very low localization
densities with a wide gap between the fluorophore localization in those slices.

To further evaluate the blind sparse inpainting reconstruction for 3D SMLM experimental
data, we used another publicly available microtubule localization list result from Zernike
Optimized Localization Approach in 3D (ZOLA-3D).58 Details about sample preparation, im-
aging setup, and processing steps can be found in Ref. 13. In brief, the microtubules in a U-373
MG cell were labeled with anti-alpha tubulin primary and Alexa-647 conjugated secondary anti-
bodies. A total of 87,959 frames were acquired using the saddle point PSF with a variable expo-
sure time of 30 (for the early stage) to 100 ms (in the later stage). Since the localization list was
already available, we directly used them. The isolated localization points due to background
noise were filtered using density filtering. The high-density 3D super-resolution image
[Fig. 9(c)] was generated using all frames with around 899,600 localization points, visualizing
the whole cell with an axial range of 2.3 μm. The low-density 3D image [Fig. 9(a)] was gen-
erated using 4400 frames, i.e., 20 fold fewer frames, with approximately 57,500 localization
points from the same localization data. For reconstruction, we constructed 46 z-slices of the
low-density image by grouping the localization data in the z axis with a size of 50 nm with
an FOVof 51.58 × 37.62 μm2. Then, the low-density image was given as an input to our blind
sparse inpainting algorithm. The reconstructed image is shown in Fig. 9(b). The color in

Fig. 8 The plot of the MS-SSIM index versus z-slices for comparing the reconstruction of micro-
tubules structures for the Tubulin-A647-3D image of Fig. 6.

Fig. 9 Blind sparse inpainting reconstruction of microtubules data from ZOLA-3D. The (a) low-
density; (b) reconstructed; and (c) high-density 3D super-resolution image with color indicating
the depth of z. The low-density image was obtained using 4400 frames and the high-density image
was obtained using 87,959 frames. The right panel in each image shows a ðy; zÞ slice at the posi-
tion indicated by the white dashed line. Pixel size: 37 nm. Scale bars: 5 μm.
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Figs. 9(a)–9(c) indicates the depth in the z direction. Microtubule structures are more clearly
revealed in reconstruction with much higher-localization densities comparable to the reference
high-density image. Superior reconstructions in the edge of the cell can be observed in the recon-
struction. The improvement in the MS-SSIM index, as shown in Fig. 10, also verifies higher
similarities with the high-density reference image after the reconstruction. However, some fine
features in the high-density image with the dense or close-by structure were not appropriately
resolved (red arrow) due to more isolated localization data in those regions.

Similarly, we also evaluate the reconstruction of another 3D SMLM image from ZOLA-3D.
The 3D mitochondrial image in COS7 Cells was obtained using saddle point PSF. The high-
density 3D image of Fig. 11(c) was rendered using 81,578 frames (≈175;000 localizations after
density filtering). For reconstruction, we used 5500 frames (≈19;500 localizations) to generate
the low-density 3D image [Fig. 11(a)]. The reconstructed 3D image in Fig. 11(b) shows improve-
ment in the density of the mitochondrial structures both in lateral and axial directions. Due to the
tubular structure of the mitochondria, the curvelet transform performed well to give superior
reconstruction. The result demonstrates the versatility of our method to reconstruct high-quality
3D super-resolution images by reducing the number of frames.

Fig. 10 The plot of the MS-SSIM index versus z-slices for comparing the reconstruction of micro-
tubules structures for the data from ZOLA-3D of Fig. 9.

Fig. 11 Blind sparse inpainting reconstruction of the mitochondrial 3D image from ZOLA-3D. The
(a) low-density; (b) reconstructed; and (c) high-density 3D super-resolution image with color indi-
cating the depth of z. The low-density image was obtained using 5500 frames and the high-density
image was obtained using 81,578 frames. The right panel in each image shows a ðy; zÞ slice at the
position indicated by the white dashed line. Pixel size: 34 nm. Scale bars: 2 μm.
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5 Conclusion

We present a computational method based on blind sparse inpainting to reconstruct the high-
density 3D images using the low-density 3D images synthesized using very few camera frames
obtained from the standard 3D SMLM data. We demonstrate high-quality reconstructions with
up to a 10-fold reduction in the number of frames in the simulated 3D SMLM images and up to
50-fold reduction for experimental microtubules 3D SMLM images. Thus, the acquisition time is
reduced considerably using fewer camera frames, and the 3D imaging is accelerated without
compromising resolution. Furthermore, no change in the existing optical setup or labeling
protocol is needed. Additionally, our method can be applied to any of the existing localization
algorithms. We expect that our method can offer further improvement in the acquisition time by
integrating with the existing higher molecular density labeling methods.

However, the proposed method has several limitations. First, because of the use of the
curvelet transform, it may be restricted to the filament structures such as microtubules. For non-
curvature structures, appropriate sparsifying transform, such as wavelet transform, can be
used. Second, the reconstruction also depends on the localization algorithms. If there are some
artefacts due to background noise or incorrect localizations, such artefacts propagate during the
reconstructions. Third, when the input image quality is limited due to scarcity of the localization
points or increased noise or nonuniform localizations, the reconstructed images may misrepre-
sent the actual structures (e.g., broken structures). Such misrepresentation can be alleviated by
improving the input image quality using more frames, but at the cost of reduced acceleration.
Finally, since missing localization positions are estimated blindly, there may be some errors in
predicting the PQ, which may give some artefacts or loss of resolution. Again, such limitations
can also be alleviated by using more frames data. We anticipate combining super-resolution
optical microscopy and our blind inpainting method will enable future real-time live-cell and
high-throughput 3D imaging to investigate the complex nanoscopic biological structures and
their functions.
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