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Abstract. Constrained by the physiology, the temporal
factors associated with human behavior, irrespective of
facial movement or body gesture, are described by four
phases: neutral, onset, apex, and offset. Although they
may benefit related recognition tasks, it is not easy to accu-
rately detect such temporal segments. An automatic tem-
poral segment detection framework using bilateral long
short-term memory recurrent neural networks (BLSTM-
RNN) to learn high-level temporal–spatial features, which
synthesizes the local and global temporal–spatial informa-
tion more efficiently, is presented. The framework is evalu-
ated in detail over the face and body database (FABO).
The comparison shows that the proposed framework out-
performs state-of-the-art methods for solving the problem
of temporal segment detection. © The Authors. Published by
SPIE under a Creative Commons Attribution 3.0 Unported License.
Distribution or reproduction of this work in whole or in part requires
full attribution of the original publication, including its DOI. [DOI: 10
.1117/1.JEI.26.2.020501]
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1 Introduction
Human behavior recognition is an important subject in the
field of pattern recognition, which is of great interest for
human–computer interaction. Although they are constrained
by one’s physiology, the temporal factors of human behav-
ior, e.g., facial movements or body gestures, are described by
four phases: neutral, onset, apex, and offset.1 Different
phases have different manifestations and intensities. Some
researchers have shown that active unit (AU) activation
detection2 and genuine (spontaneous) emotion recognition3

both benefit from different temporal segments. In addition,
they have been proven to be beneficial for emotion recogni-
tion, especially for multimodal emotion recognition combin-
ing facial expression, body expression, voice, etc.4–11

Therefore, the temporal segment detection of human behav-
ior warrants further exploration.

The work introduced in this letter offers the following
contribution: to date, we are the first to introduce the bilateral
long short-term memory recurrent neural networks (BLSTM-

RNN) for the automatic detection of the temporal phases of
human behavior. A high-level feature that simultaneously
contains temporal–spatial information is learned with the
BLSTM-RNN method, which has synthesized both local and
global temporal information. It shows outstanding performance.

The remainder of this letter is organized as follows.
Section 2 introduces related works. Section 3 provides
details of the overall methodology. Section 4 describes the
experiments and the extensive experimental results. Finally,
the conclusion is given in Sec. 5.

2 Related Work
In this section, we will review some existing methods that are
related to temporal segments. A number of studies have
detected the temporal segments by temporal rules drawn up
by researchers or other classification schemes, such as sup-
port vector machines (SVM)12 and hidden Markov models
(HMMs).13 Pantic and Patras14,15 used the temporal rules
they drew up to detect the temporal segment of facial
AUs. Focusing on bimodal affect recognition, Gunes and
Piccardi10 proposed a method to automatically detect tempo-
ral segment of facial movements and body gestures, which
includes both frame- and sequence-based strategies. HMM
was applied as a sequence-based classifier. Several different
algorithms provided in the Weka tool, including SVM,
AdaBoost, and C4.5, have been utilized as frame-based
classifiers. Jiang et al.2 used HMMs to detect the temporal
segment of facial AUs. Chen et al.16 design two features to
describe face and gesture information, then use SVM to
segment expression phase. However, the segment accuracy
(Acc) of the existing methods is still to be improved.

Recently, deep learning methods have become very popu-
lar within the community of computer vision. BLSTM-RNN
is one of the state-of-the-art machine-learning techniques.

In this letter, to synthesize the local and global temporal–
spatial information more efficiently, we present an automatic
temporal segment-detection framework that uses BLSTM-
RNN17 to learn high-level temporal–spatial features. The
framework is evaluated in detail over the face and body
(FABO) database.18 The result of the experiments in Sec. 4
proves that the proposed framework outperforms other state-
of-the-art methods for solving the problem of temporal seg-
ment detection.

3 Methodology
This section presents the details of our method. Figure 1
shows an overview of our proposed method, which consists
of two major parts: (1) data preprocessing and (2) feature
extraction and representation. We use SVM as a classifier.

3.1 Data Preprocessing
Face detection is a very important step in the entire pipeline
of facial movement temporal segment detection, which
directly affects the effectiveness of the feature extraction.
Before considering more accurate feature extraction by using
methods, such as discrete cosine transform (DCT) com-
bined,19 the local binary pattern (LBP),20 the pyramid histo-
gram of oriented gradient (PHOG),21 the entropy (E),22 the
motion area (MA),16 and the neutral divergence (ND),16

we follow the methods of23–26 All frames are aligned to
this base face through affine transformation and cut to
200 × 200 pixels.*Address all correspondence to: Jun He, E-mail: hejun@bnu.edu.cn
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3.2 Feature Extraction and Representation
3.2.1 Low-level features

We extract E and MA based on the motion history image
(MHI). An MHI is a static image template which is help-
ful in understanding the motion location and path as it
progresses.27

As is common for facial movements, we extract six
low-level descriptors, including the sum of pyramid LBP
(SPLBP), the sum of pyramid two-dimensional DCT
combined (SPDCT), the sum of PHOG (SPHOG), E, MA,
and ND. For body gestures, only E, MA, and ND are
extracted as low-level descriptors. Brief introductions can be
found in Refs. 16, 19–22.

3.2.2 High-level features

After the first step, we obtain several low-level features.
Additional temporal information is obtained by learning the
high-level features in the time domain with the BLSTM-
RNN method and feature-level fusion strategy, which was
used to synthesize the local and global temporal information.

Because the input of BLSTM-RNN is required to be a
sequence, first, we employ a fixed-size temporal window
with its center located at the current frame. Figure 2 shows
some examples. In our experiments, we set the temporal
window size equal to that of Chen et al.16 Therefore, each
low-level feature vector has the dimensionality of the tempo-
ral window size. Then these feature vectors can be used as
input for BLSTM-RNN.

For BLSTM-RNN, we use the implementation of
Theano.28 Figure 3 shows the network structure of high-
level features. First, we use low-level features as input for
BLSTM-RNN and compute the forward hidden sequence
~h and the backward hidden sequence ⃖h, respectively. Then
we link them together by concatenation.

Then we use a feature-level fusion strategy for all of
the extracted high-level features. This fusion can be imple-
mented by concatenating all feature vectors together.

Finally, we employ SVM29 as the classifier to detect
temporal phases.

4 Experiments

4.1 Experimental Setup
We conduct the experiments on the bimodal face and body
database FABO.18 This database consists of both face and
body recordings using two cameras simultaneously. So far,
it is the only bimodal database that has both expression anno-
tation and temporal annotation. We choose 245 × 2 videos in
which the ground truth expressions from both the face cam-
era and body camera are identical. Among them, 129 videos
were used for training and 119 videos were used for testing.
In this section, we select the ACC as the measure to evaluate
the results. The calculating equation of ACC is given as

EQ-TARGET;temp:intralink-;e009;326;267ACC ¼
P

s
i¼1 TPiP

s
i¼1ðTPi þ FPiÞ

; (9)

Fig. 1 Flow chart of the proposed method to detect temporal segments of body gesture and facial move-
ment over the FABO database.

Fig. 3 Network structure for learning high-level descriptors.
Fig. 2 Examples of feature representation of current frame, which frames
are within a fixed-size temporal window centered at current frame.
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where s denotes the number of temporal phase categories, Pi
denotes the precision of the i’th temporal phase class, and
TPi and FPi denote the number of correct classification
and the number of wrong classifications in the i’th temporal
phase class, respectively.

4.2 Experimental Results
In this section, we compare the ACC in percent under differ-
ent conditions.

4.2.1 Result of feature-level fusion

In this part, we apply three methods for feature-level fusion,
and the best one is used on the experimental results.

Table 1 shows the result of feature-level fusion from fea-
tures of body gestures using BLSTM-RNN with a softmax
classifier. In the table, the item BLSTM(1) means using the
output of the first layer of BLSTM as features; the item
BLSTM(2) means using the output of the second layer
of BLSTM as features; the item BLSTM(1+2) means con-
catenating the output of the first and second layers of
BLSTM as final features; the item ALL(before) means first
simply concatenating all low-level features together, then
combining them for input into a BLSTM-RNN; the item
ALL(after) means first use each low-level feature as input
into a BLSTM-RNN, then simply concatenate all high-
level features together. The results in this table indicate that
the most accurate result is 95.20. It is obtained by first using
each single feature as input into a BLSTM-RNN, of which
the output of the first and second layers is concatenated
together as high-level features. Then apply softmax as the
classifier.

Table 2 presents the results of feature-level fusion from
features of facial movement by using BLSTM-RNN with
softmax. This table indicates that the most accurate result
is 88.54, which is obtained by first using each low-level
feature as input into a BLSTM-RNN, and concatenating
the output of the first and second layers, before simply
concatenating all high-level features together.

4.2.2 Results of some classifiers on low-level
features and high-level features

In this part, we compare different classifiers for temporal
segmentation.

Table 3(a) contains the classification results of some clas-
sifiers [e.g., softmax, SVM, random forest (RF)] for body
gestures. In this table, the item ALL(low level) means simply
concatenating all low-level feature vectors together. The item
ALL(high level) means simply concatenating all high-level
features together. The results in this table show that: (1)
the best result is 95.30, which is obtained with the SVM,
and (2) the results on high-level features are more accurate
than those on low-level features. It shows the validity of
high-level features.

Table 3(b) shows the classification results of some clas-
sifiers for facial movement. The results in this table show the
following: (1) the best result is 89.52, which is obtained with
the SVM and (2) the results on high-level features are more
accurate than on low-level features. It shows the validity of
high-level features. From Table 3, we can see that SVM
performs best, so we apply SVM as our final classifier.

4.2.3 Performance comparison

In this part, we present a comparison of results from feature-
and decision-level fusion for facial movement and body
gesture, respectively, in Table 4, and a comparison of results
from our approach and relevant experiments on FABO data-
base in Table 5.

Table 4 shows the result of feature- and decision-level
fusion for facial movement and body gesture. These results

Table 2 Result of feature-level fusion from features of facial movement using BLSTM with softmax.

SPDCT E SPLBP MA ND SPHOG ALL(before) ALL(after)

BLSTM(1) 82.23 65.64 83.92 68.51 77.48 83.40 86.93 88.03

BLSTM(2) 82.39 68.56 83.74 70.39 78.27 84.27 87.73 88.12

BLSTM(1+2) 82.55 68.73 83.96 70.91 78.78 84.43 87.93 88.54

Table 1 Result of feature-level fusion from features of body gestures
using BLSTM-RNN with softmax classifier.

ND MA E ALL(before) ALL(after)

BLSTM(1) 90.75 80.15 76.97 93.54 95.09

BLSTM(2) 90.75 80.29 78.87 93.92 95.17

BLSTM(1+2) 90.75 80.83 79.74 94.10 95.20

Table 3 Classification results of some classifiers for body gesture
and facial movement.

ALL (low level) ALL (high level)

(a)

Softmax 90.86 95.20

SVM 76.30 95.30

RF 85.30 94.80

(b)

Softmax 87.27 88.54

SVM 72.67 89.52

RF 76.02 89.23
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indicate that the results obtained for feature-level fusion are
more accurate than those obtained for decision-level fusion.
Thus, we employed feature-level fusion as our final strategy.

The performance of the proposed approach and the state-
of-the-art approach reported in Refs. 10 and 16 is compared
in Table 5. Gunes and Piccardi10 proposed a method to auto-
matically detect temporal segment of facial movement and
body gesture, which includes both frame- and sequence-
based strategies. HMM was applied as a sequence-based
classifier. Several different algorithms provided in the Weka
tool, including SVM, AdaBoost, and C4.5, have been uti-
lized as frame-based classifiers. They obtained an ACC of
57.27% for face and 80.66% for body, respectively. Chen
et al.16 designed two features to describe face and gesture
information, then used SVM to segment expression phase.
They only used body video to detect the temporal segment
of the expression; they did not detect the temporal segment
of facial movement and body gesture separately. They
obtained an ACC of 83.10% for expression. Results of
the proposed approach are obviously more accurate than
those of the state-of-the-art methods.

5 Conclusions
This letter presents a temporal segment detection framework
using BLSTM-RNN to learn high-level temporal–spatial
features. The framework is evaluated in detail using data
obtained from the FABO database. A comparison with other
state-of-the-art methods shows that our method outperforms
the other approaches in terms of temporal segment detection.
In the future, we plan to focus on affect recognition based on
temporal selection face and body display.
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