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Abstract. Task-related hemodynamic responses contribute prominently to functional magnetic resonance im-
aging (fMRI) recordings. They reflect behaviorally important brain states, such as arousal and attention, and can
dominate stimulus-evoked responses, yet they remain poorly understood. To help characterize these
responses, we present a method for parametrically estimating both stimulus-evoked and task-related compo-
nents of hemodynamic responses from subjects engaged in temporally predictable tasks. The stimulus-evoked
component is modeled by convolving a hemodynamic response function (HRF) kernel with spiking. The task-
related component is modeled by convolving a Fourier-series task-related function (TRF) kernel with task timing.
We fit this model with simultaneous electrode recordings and intrinsic-signal optical imaging from the primary
visual cortex of alert, task-engaged monkeys. With high R2, the model returns HRFs that are consistent across
experiments and recording sites for a given animal and TRFs that entrain to task timing independent of stimu-
lation or local spiking. When the task schedule conflicts with that of stimulation, the TRF remains locked to the
task emphasizing its behavioral origins. The current approach is strikingly more robust to fluctuations than earlier
ones and gives consistently, if modestly, better fits. This approach could help parse the distinct components of
fMRI recordings made in the context of a task. © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.NPh

.4.3.031223]
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1 Introduction
Functional magnetic resonance imaging (fMRI) measurements,
both blood oxygen-level dependent (BOLD) and cerebral blood
volume (CBV), show prominent task-related endogenous hemo-
dynamic responses. These reflect behaviorally important brain
states, such as attention, vigilance, and anticipation (reviewed,
e.g., in Refs. 1–3). The neural mechanisms underlying these
endogenous responses are still poorly understood because of
the relative paucity of studies combining imaging with electro-
physiology in alert task-engaged subjects. However, a growing
number of studies are starting to fill this gap.4–7

This paper concerns a particular task-related hemodynamic
response that we first measured in the alert macaque primary
visual cortex (V1).8 With the animals engaged in a periodic
task, the task-related response was entrained to task timing in-
dependent of visual stimulation8,9 (also see Ref. 10). Although it
correlated with task performance,9 this response was not visuo-
topically specific and, thus, likely distinct from spatial attention
(also see Refs. 11 and 12). Concurrent electrode recordings
showed it to be unpredicted by local spiking or local field poten-
tial (LFP; also see Refs. 13–15). In the presence of visual
stimuli, this task-related response added linearly to the stimulus-
evoked component of the response, which, by contrast, was very

well predicted by local spiking16,17 (also see Refs. 18 and 19).
We measured these brain hemodynamic responses from monkey
V1 using intrinsic-signal optical imaging (ISOI), an optical ana-
log of fMRI that deduces changes in local blood volume and
oxygenation from changes in light reflection off the brain sur-
face (Refs. 20–22; see acknowledgment for a more detailed dis-
cussion of ISOI). However, similar task-related hemodynamic
responses were also reported in human subjects by at least two
groups using BOLD fMRI.23–25 Having the animal model, thus,
offers an important avenue to investigate the neural basis of task-
related endogenous components of fMRI measurements.

Here, we describe a parametric method for simultaneously
fitting the task-related and stimulus-evoked components of mea-
sured hemodynamics, which improves considerably on our ear-
lier technique for calculating these components. Our earlier
approach was a hybrid one; we fit a hemodynamic response
function (HRF) to the responses evoked by the controlled visual
stimuli alone, which we estimated by subtracting the mean
blank-trial response (i.e., with no stimulus) from all other
responses. This subtraction was intended to remove the task-
related component along with responses to uncontrolled visual
stimulation. The task-related component itself was not fitted but
rather defined as the residual that could not be regressed away
using the fitted HRF.16,17 This approach (labeled “blank-sub-
tracted” in this paper) was adequate in the earlier work where
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we tried to keep the task and thus, presumably, the task-related
hemodynamic component stereotyped throughout an experi-
ment. However, we find that changing behavioral parameters
(reward size26 and task performance9) strongly modulate the
task-related component. To investigate the effect of the behav-
ioral state on the task-related component, it is helpful to develop
a parametric model. Therefore, for our approach, we parametrize
the task-related component as a “task-related function (TRF)”
kernel, modeled as a Fourier series, which we convolve with
delta functions aligned to trial onsets. The resultant estimate
of the task-related component is summed linearly with the
stimulus-evoked component—still modeled as an HRF kernel
convolved with spiking—to predict the measured hemodynam-
ics. The parameters of the full model (labeled “HRF+TRF”
here) are obtained by fitting the net prediction to the observed
hemodynamics. We find that the HRF+TRF fits are markedly
more robust to error than our original blank-subtracted ones.
These fits are also consistently, albeit modestly, better (giving
higher R2). In addition, the new HRF+TRF fits confirm our ear-
lier finding that the stimulus-evoked component of hemodynam-
ics is better predicted by concurrent spiking than by LFP.17

2 Materials and Methods
This paper presents a reanalysis of earlier data17 (65 sites com-
bining electrode recordings and imaging, from four hemispheres
in two monkeys comprised the main body of data used to com-
pare the HRF+TRF model to alternate models; nine additional
sites in one monkey were used to test this model for cases where
the task and the visual stimulation had conflicting timing).
Earlier publications8,16,17 contain detailed descriptions of the
experimental approach and recording techniques, which are
summarized briefly here while we focus on the current analytical
approach. All procedures were performed in accordance with
the National Institutes of Health Guide for the Care and Use of
Laboratory Animals and were approved by the Institutional
Animal Care and Use Committees of Columbia University and
the New York State Psychiatric Institute.

2.1 Overall Experimental Setup

Our original experiments were designed to rigorously test the
linear separability of task-related and stimulus-evoked hemo-
dynamic responses over a wide dynamic range of combinations
of the two. We chose a task, comprising periodic fixation, for
juice reward, that evokes strong task-related responses8 in
V1. Each trial was behaviorally identical. It started with a fix-
ation cue changing color (e.g., from equiluminent red to green),
the signal for the animal to hold fixation until the color changed
back again; the animal received a juice reward for holding fix-
ation, but no time out or other punishment if not. Fixations
lasted from 3 to 4 s; net trial periods ranged from 10 to 20 s
in different experiments but were fixed and predictable within
an experiment. While the animal fixated, he was presented pas-
sively with visual stimuli chosen to elicit a wide dynamic range
of stimulus-evoked responses. They consisted of drifting sinus-
oidal gratings ranging in contrast (one per trial) from near-back-
ground to 100% in contrast-doubled steps (e.g., 3.125%, 6.25%,
12.5%, 25%, 50%, 100%, and a “blank,” i.e., 0% contrast; some
experiments were run with fewer contrasts, in the interest of
speed). Contrasts were presented in “blocks” of one full (ran-
domized) set per block and were repeated within a block
until the animal had correctly completed one trial per contrast.
This was intended to have equal numbers of correct trials per

contrast in an experiment, distributed roughly uniformly across
long-term changes in the behavioral state (alert/drowsy).

2.2 Optical Imaging and Electrophysiology

ISOI (Dalsa 1M30P camera, 15 frames∕s; software modified
from that in Ref. 27) was carried out through a surgically
implanted glass-windowed stainless steel recording chamber
with a clear silicone artificial dura.28 The imaging wavelength
(green: 530 nm; high-intensity LED, Agilent Technologies and
Purdy Electronics) is absorbed equally by oxy- and deoxyhemo-
globin thus measuring changes in total hemoglobin, analogous
to local CBV.16 Concurrent electrode recordings [Plexon (RRID:
nif-0000-10382)] were mostly, but not exclusively, confined to
upper cortical layers, roughly matching the ∼500-μm sampling
depth of the ISOI measurement. The electrode measurement was
split into spiking (250 Hz to 8 kHz bandpass) and LFP (0.7 to
170 Hz) using standard Plexon settings. All spiking was multi-
unit activity (MUA), defined by the spiking signal crossing a
threshold. (See Refs. 8, 16, and 17 for details on recording
setup). Gamma LFP was defined as the 30- to 90-Hz band-
pass-limited LFP spectral power (multitaper spectral analysis
using the Chronux MATLAB® toolbox).

The analysis only considered trials where the monkey cor-
rectly held fixation.9 Trials with transients greater than 35×
of the baseline standard deviation on the electrophysiological
signal were rejected; the accepted trial pairs (hemodynamics
and electrophysiology) were converted into z-scores for fitting
after removing slow baseline drifts (>30 s) and heart rate arti-
facts (filter ∼2 to 3 Hz) from the hemodynamic response (using
the “runline” command in the Chronux MATLAB® toolbox).

2.3 HRF+TRF Model Relating Hemodynamics to
Electrophysiology and Task Timing

The measured hemodynamics HðtÞ was modeled as the sum of
two components: a stimulus-evoked component comprising an
HRF kernel convolved with the concurrently measured spiking
SðtÞ, and the task-related component comprising a TRF kernel
convolved with the set of delta functions at trial onsets, TrlðtÞ.
The symbol * denotes convolution over time

EQ-TARGET;temp:intralink-;e001;326;307HðtÞ ¼ HRF � SðtÞ þ TRF � TrlðtÞ: (1)

The HRF kernel was parametrized, as in Refs. 8, 16, and 17, as a
gamma-variate function of time t

EQ-TARGET;temp:intralink-;e002;326;255HRFðt; τ;W; AÞ ¼ A

�
t
τ

�
α

exp

�
−α

t − τ

τ

�
: (2)

The HRF parameters fitted during optimization are the ampli-
tude A, time to peak τ, and full width at half maximum
W.8,29,30 The factor α ¼ 8.0 × logð2.0Þ × ð τWÞ2.

The TRF kernel was parametrized as the finite sum of
a Fourier time series

EQ-TARGET;temp:intralink-;e003;326;155TRFðt;a;b;P;NÞ¼
XN
n¼1

�
an cos

�
n
2π

PT
t

�
þbn sin

�
n
2π

PT
t

��
:

(3)

Although the Fourier series were based on the trial period T, the
fundamental Fourier period was allowed to vary as a fraction P
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of the trial period and optimized in the fit. The parameters, an
and bn (with n ranging from 1 to the total number of terms in the
Fourier series, N), are the pairs of cosine and sine coefficients,
respectively, for the n’th Fourier term, and are also optimized in
the fit along with the parameter P and the three parameters for
the HRF.

In Sec. 3.6, the measured spiking SðtÞ was replaced by the
concurrently measured gamma LFP.

2.4 Earlier Approach: Blank-Subtracted Fit

The earlier blank-subtracted fit was repeated for comparison
with the current results. We used the model

EQ-TARGET;temp:intralink-;e004;63;612HBlanksubtractedðtÞ ¼ HRF � SBlanksubtractedðtÞ; (4)

where the subscript Blanksubtracted indicates that mean blank-
trial responses were subtracted from the measured hemodynam-
ics and spiking (see Ref. 16). The HRF was modeled as a
gamma-variate function as above [Eq. (2)].

2.5 Control: Gamma Prime HRF Convolved with
Spiking

We wanted to control for the possibility that the model did not
need any term independent of spiking; that simply using a more
complex HRF with more terms was adequate. We tested by fit-
ting with a multicomponent “gamma prime HRF” kernel but
with no additional task-related terms or blank-subtraction

EQ-TARGET;temp:intralink-;e005;63;441HðtÞ ¼ HRFGammaprime � SðtÞ: (5)

The HRFGammaprime was modeled as a gamma-variate function
and its first time derivative31,32

EQ-TARGET;temp:intralink-;e006;63;388HRFGammaprimeðt;τ;W;A;KÞ¼A
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(6)

All terms shared with the gamma-variate HRF [see Eq. (2)] are
defined as for the HRF. K is an additional amplitude parameter
multiplying the time derivative. The prediction for this model
consisted of the convolution of this HRFGammaprime with the
full measured spiking.

2.6 Fitting the Models

All relevant models were fitted independently for each experi-
ment (N ¼ 65þ 9) by matching the predicted to the measured
hemodynamics. The error was defined as the normalized sum
squared error

�SSerror
SStotal

�
calculated separately per contrast and

then averaged over all contrasts, including the blank. This
was intended to give equal weight to the fractional error at
each stimulus contrast. The error was minimized by varying
the fitted parameters using a downhill simplex algorithm (“fmin-
search,” MATLAB® methods as in Ref. 17). For the HRF+TRF
model, we optimized HRF parameters, A, τ, and W, and TRF
parameters, a1;b1;; : : : aN;; bN;, and P; for other models, we
optimized the smaller sets of relevant model parameters. To
reduce the chances of getting caught in a local minimum, we
started with large sets of initial parameter values, independently

covering more than an order of magnitude for each fitted param-
eter. The fits were robust and converged to the same optimal
parameters from multiple starting values, giving us confidence
that we had reached global and not local minima.

It is important to emphasize that the fitting procedure was
formally identical for each of the models tested. Specifically,
we constructed concatenated sequences of the average response
per contrast, randomized per contrast (same random sequence
for hemo and spiking or LFP depending on the fit), and over
multiple blocks (an arbitrarily large number 52, about 100×
larger than a single HRF kernel convolution length; to minimize
edge effects, we only matched traces two convolution lengths in
from the edge). For the blank-subtracted model, the blank trial
responses consisted of flat lines and all other responses were
blank subtracted; for all other models, we used the mean mea-
sured responses. These sequences of hemo and spiking or LFP
traces were then fitted against each other for the model being
tested, as described in the above paragraph. Thus, differences
in the robustness of the fitted parameters (see below) or in
the goodness of fit result from differences in the model rather
than in the fitting process.

The goodness of fit R2 for the optimal prediction was defined
as the coefficient of determination

�
1 − SSerror

SStotal

�
calculated sepa-

rately per contrast and averaged across contrasts. This, again,
was intended to give equal weight to errors at each contrast.
When comparing fits across models, it is also important to
note that the denominators ðSStotalÞ in these calculations of
R2 were identical for all models fitted to a given experiment.
Thus, differences in R2 reflected the differences in the residual
errors ðSSerrorÞ for the models being compared.

For the HRF+TRF fit, the optimal number of Fourier termsN
for the TRF kernel (N ¼ 1: fundamental alone, N ¼ 2: funda-
mental and first harmonic, etc.) was deduced by comparing the
cross-validated goodness of fit obtained using models with pro-
gressively increasing N (see Sec. 3.2).

2.7 Comparing Robustness across Models:
Bootstrap

We used a bootstrap procedure to assess the robustness of our
models to variability in the measured responses, simulating fluc-
tuations in the data with bootstrapped sample sets of spiking and
hemodynamic response pairs. Sets were generated for each
stimulus contrast separately, choosing randomly with replace-
ment from the recorded trials for that stimulus while preserving
the number of trials. Selections were block randomized, as with
the cross-validation test sets. Each such sample set was then sep-
arately fitted using HRF+TRF and blank-subtracted approaches.

We then used two measures of robustness to compare the two
fitting approaches.

1. The robustness of the optimal HRF: We first calcu-
lated, for each bootstrapped sample, and separately for
the two fitting approaches, the mismatch of the boot-
strap HRF to the original HRF. This mismatch was
quantified as the sum squared difference normalized
by the sum of squares of the original HRF. The stan-
dard deviation of this mismatch over the population of
bootstrap samples was taken as a measure of robust-
ness: the lower the standard deviation, the more robust
the fit.
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2. The robustness of the R2 measurements: We similarly
calculated the standard deviation of the R2 over the
population of bootstrap samples, separately for each
fitting approach. Again, the lower the standard devia-
tion, the more robust the fit. For both measures, we
quantified the statistical significance of the compari-
son at two levels: within each experiment and pairwise
across all experiments. Within each experiment, we
tested that the dispersion (a generalization of variance
or standard deviation for nonnormal data) across the
bootstrapped blank-subtracted fits was higher than
that across the HRF+TRF fits, rejecting the null
hypothesis that they are equal. Since the distributions
of the fits were nonnormal, we used a single-tailed
Ansari–Bradley test on the distributions centered
around their respective medians (“ansaribradley” in
MATLAB®); this test is a nonparametric analog of
the 2-sample F test (testing that two normal distribu-
tions have the same variance). For the pairwise tests
across all experiments, we used the Wilcoxon signed-
rank test to calculate p values comparing blank-
subtracted versus HRF+TRF fits.

2.8 Comparing Goodness of Fit R2 across Models:
Cross Validation

R2 was compared pairwise across models using 50–50 cross val-
idation. For each experiment, we first generated a “master set”
of 1000 (or, in the interest of speed, 500) training and test data
pairs using random 50–50 splits. Using standard cross-valida-
tion methods, we fit this master set with each model separately,
getting sets of test R2 using parameters fit to corresponding
training sets. To compare a pair of models “A” and “B,” we
obtained the distribution of cross-validated [R2 (model A) –

R2 (model B)], as pairwise differences per data split for an
experiment. We tested for the hypothesis that [R2 (model A)
> R2 (model B)] by estimating the one-sided p value of the null
[R2 (model A) – R2 (model B) = 0]. This defined our p value
per model comparison, per experiment.

Since our stimuli were presented block randomized, the trial
splitting for the initial master set was also done blockwise (i.e.,
randomly selecting entire blocks of trials for the model or test
half), to avoid problems due to slow changes in brain state dur-
ing the experiment. This constraint still allowed a large sample
space. For an experiment of 30 blocks, each with its full set of
stimuli, this gives 30!∕ð15! × 15!Þ or 1.5 × 108 possible splits.

3 Results

3.1 HRF+TRF Model

The HRF+TRF model fits our measured data with generally
high R2. The resulting optimal HRFs were consistent across
experiments and recording sites for a given animal; accompany-
ing TRFs were tightly entrained to the fixation task schedule.
Notably, when the task schedule differed from that of visual
stimulation, the TRF remained locked to the task schedule, sug-
gesting its basis in behavioral versus stimulus-evoked brain
activity. Comparisons with the blank-subtracted approach
showed that the current fits are markedly more robust. Their
R2 values are also consistently, if modestly higher.

The HRF+TRF approach to fitting [see Eqs. (1)–(3)] and the
resultant optimal predictions are illustrated in Fig. 1 for the same
example data set as used in our earlier work (see Figs. 1 and 2 of
Ref. 16). The recordings were made in V1 of an alert monkey
whose task was to hold fixation periodically for a juice reward
(4-s fixations, 11.2-s trials. We found earlier that this task evokes
strong task-related responses).8,16 While fixating, the monkey
was passively shown grating stimuli ranging in contrast from
near background to 100% in contrast-doubled steps, along
with a blank stimulus. These stimuli evoked a wide dynamic
range of responses as evident in the recorded hemodynamic
[Fig. 1(a1)] and concurrent spiking traces [Fig. 1(a2), main
panel]. As in our earlier work, the hemodynamic response is
proposed to be the sum of a stimulus-evoked and a task-related
component. In our current approach, both the stimulus-evoked
and task-related components are fitted parametrically. The
stimulus-evoked component is modeled as the convolution of
measured spiking with a gamma-variate HRF kernel [Fig. 1(a2);
HRF shown as inset; also see Eq. (2)]. The task-related compo-
nent is modeled as the convolution of delta functions at trial
onsets, of unit amplitude independent of visual stimulation,
with a Fourier-series TRF kernel [Fig. 1(a3); also see Eq. (3)].
To get optimal fitted HRF and TRF, the kernels are varied para-
metrically to get the best match between the sum of these two
modeled components and the measured hemodynamic response
(see Sec. 2.6).

The resulting optimal predictions are shown in Figs. 1(b1)–
1(b3). For this fit, the TRF kernel was modeled as a Fourier
series consisting of the fundamental frequency and its first har-
monic (see Sec. 3.2 regarding the optimal number of TRF
Fourier terms). The two resulting pairs of cosine and sine com-
ponents, scaled by the optimal fitted Fourier coefficients, are
plotted in Fig. 1(a3) with their sum, the optimal predicted
task-related component in Fig. 1(b3). The fitted fundamental
frequency came to 0.092 Hz, i.e., 1.026× the task trial frequency
of 0.089 Hz (corresponding to the trial period of 11.2 sec). The
optimal HRF from the same fit, shown below 1(a2), predicts the
stimulus-evoked components shown in 1(b2). Note the apparent
upward shift in the stimulus-evoked component relative to the
measured hemodynamics at each contrast, which is corrected by
summing with the predicted task-related component [1(b3)].
The final predictions [1(b1)] match measured values well, as
evident in the high R2 values per contrast shown alongside
the predictions. The overall goodness of fit (R2 ¼ 0.94) defined
as the mean of these R2 values per contrast (see Sec. 2.6) is com-
parable to that obtained earlier with blank-subtracted fits
[R2 ¼ 0.93; fit not shown. See Fig. 2(c) of Ref. 16].

3.2 Optimal Number of TRF Fourier Terms

The question that remained unanswered was: how many terms
should be used in the Fourier series defining the TRF kernel
(Fig. 2)? In principle, more Fourier terms lead to more high-fre-
quency structure in the TRF kernel [Fig. 2(a)] and better fits, but
the improvements could be due to overfitting. We determined
the optimal number of Fourier terms using cross validation
(see Sec. 2.8). We compared four nested HRF+TRF models
with increasing numbers of TRF Fourier terms, from the funda-
mental alone up to the third harmonic (i.e., the fundamental fre-
quency, along with harmonics 2×, 3×, and 4× the fundamental),
using the same dataset as in Fig. 1. The tests showed that models
where the TRF Fourier series included the first harmonic with
the fundamental gave significantly better fits (higher R2) than
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Fig. 1 HRF+TRF model and optimal predictions compared with measured hemodynamics. (a1)–(a3)
Measured responses and schematic of the model. (a1) The measured hemodynamic response
(shown for an experiment with five stimulus contrasts and a blank) is proposed to be the sum of two
components. The first component, the stimulus-evoked one (a2), is modeled as the measured spiking
response per contrast [(a2), main panel], convolved (⊗) with a gamma-variate HRF kernel [(a2), inset].
The optimal HRF kernel after fitting is shown below (a2), with the corresponding prediction in (b2). The
second component, the task-related one (b3), is modeled as the convolution of unit-amplitude delta func-
tions at trial onsets [(b3), main panel] convolved with a Fourier series kernel [TRF: (a3) inset: illustrated
here with just the fundamental sine term]. The optimal fitted TRF for a Fourier series model that includes
the fundamental and the first harmonic is shown below (a3). It sums to the predicted task-related com-
ponent shown in (b3). Note that although the period of the fundamental appears to match that of the trial,
the model does not assume a match. Rather, it lets the fundamental be a variable fraction P of the trial
period. Thus, for this model, the set of optimized parameters comprises P and the two pairs of cosine and
sine Fourier coefficients an and bn for the TRF, and the three parameters amplitude, time to peak, and
peak width for the HRF [see Eqs. (1)–(3) in Sec. 2.3]. Also note, parenthetically, that the task-related
component cannot simply be equated to the no-stimulus (blank-trial) response. All trials, including
the blank, have a prominent trial-locked spiking response: reduced spiking as the animal fixates on
the gray screen, increasing with a rebound at the end of fixation [(a2); also see supplementary
Fig. 1 in Ref. 16). This trial-locked spiking would evoke trial-locked hemodynamics that is impossible
to disambiguate from the trial-locked task-related component without a model such as the one here.
(b1)–(b3) Optimal predictions. (b1) Optimal predicted hemodynamics. This is the sum of the optimal pre-
dicted stimulus-evoked component (b2) and the optimal predicted task-related component (b3). The R2

of the prediction compared to the measured hemodynamics, contrast by contrast, and the mean R2 aver-
aged across contrasts are shown in (b1). Contrast is color coded, as shown in the key in (a1. Note: For
this and all other figures, please see online version for color coding; print version only uses grayscale). All
hemodynamic responses both measured and predicted are shown in units of fractional change in light
reflected off the cortical surface (dR∕R); this is proportional to local change in blood volume, with down-
ward excursions indicating increased absorption of light and thus increased blood volume. All traces
other than inset kernels are on a common time scale. (a1) and (a2) show the trial structure, i.e., the
fixation and stimulus presentation periods on the time axis, color coded as in the key in (a1). The label
below (b3) (“STARBUCK_. . . ”) identifies the experiment. Similar labels are used in all figures to identify
data sets.
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Fig. 2 Optimal TRFs and HRFs. (a) Comparison of optimal TRFs for different models fitted to the same
data set as in Fig. 1. Top “TRF as unpredicted residual” shows TRF estimated for the blank-subtracted fit,
as the residual after regressing away all spiking-related components from the measured hemodynamics.
Gray lines: individual contrasts; black: average across contrasts. The four traces below (green, in online
version) show optimal TRFs from HRF+TRF fits, for models using progressively more Fourier terms from
the fundamental alone up to the third harmonic; (traces are shifted vertically downward for visibility).
Asterisk marks the fundamental + first harmonic, the same TRF as in Fig. 1(b3). Note the increasing
high-frequency structure with increasing numbers of Fourier terms. (b) Using cross validation to test
if increasing the number of TRF Fourier terms increases R2 and improves the fit (1000 samples, 50–
50 splits; each sample fitted with all four models). Histograms of pairwise differences in cross-validated
R2 for three pairs of models (see color coding; labels refer to the maximum number of harmonics in the
Fourier series). We tested each pairwise difference of R2 for an improvement in R2 on adding more
Fourier terms, against the null hypothesis that the two R2 values are equal to each other (see
Sec. 2.8). The R2 for the fundamental + first harmonic was significantly higher than that for the funda-
mental alone (p < 0.017 for the null hypothesis; see histogram for “first harmonic – fundamental”).
However, there was no further improvement on adding the second (p ¼ 0.44) or the third harmonic
(p ¼ 0.30; note that the corresponding histograms are largely centered on 0). Histogram bin size =
0.005. Y Scale bar: N ¼ 100 counts for first harmonic – fundamental, and 600 counts for the other
two. (c) Optimal TRFs across experiments (fundamental + first harmonic Fourier model), shown per mon-
key “S” (N ¼ 40) and “T” (N ¼ 25). Traces scaled by the amplitude (standard deviation) of the hemo-
dynamic response for the experiment. Inset shows the histogram of the fitted optimal factors P
expressing the TRF Fourier fundamental period as a fraction of the trial period. The values are very
close to 1 (median = 0.99 [0.95; 1.1], N ¼ 65, where the numbers in square brackets [..] mark the
−∕þ 34th percentile limits flanking the median, equivalent to −∕þ 1 SD, Gaussian). (d): Top panel:
residual unpredicted by spiking, same data set as Fig. 1, using the same optimal HRF. Same horizontal
(time) and vertical scale as the TRF traces in (a). Color coded for stimulus contrast as in Fig. 1. Lower
panel: amplitudes of the residuals, plotted against the amplitudes of predictions from spiking, color-coded
for contrast. Amplitudes were quantified as the standard deviation over a trial, normalized to the predic-
tion from spiking at the highest contrast. Line shows the linear regression. (e) Regressions between
residual and spiking prediction calculated as in (d), shown for the full set of experiments. (f) Optimal
HRFs, also separated by animal [same color coding as in (c)], shown normalized to the peak to help
distinguish time courses. Note the distinct HRF time courses per monkey, consistent across experiments
and recording sites (monkey S: τ ¼ 2.5 [2.0 3.2];W ¼ 2.9 [1.6 5.4]; monkey T: τ ¼ 5.6 [3.1 8.0];W ¼ 4.0
[2.7 6.0], where τ: time to peak,W : peak full width at half maximum, and data are expressed as “median
[min max]”).
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ones with the fundamental alone [Fig. 2(b)]. However, increas-
ing the number of TRF Fourier terms to the second and third
harmonics led to no further significant improvement. We thus
used TRF Fourier series with the fundamental and first harmonic
as the standard for fitting all experiments [optimal TRFs across
experiments are shown in Fig. 2(c)]. These TRFs largely tracked
the task period [see inset, Fig. 2(c)] and were dominated in
amplitude by the fundamental (amplitude of first harmonic rel-
ative to the fundamental: (median ¼ 0.34 [0.20; 0.82, −∕þ 34th
percentile (1 SD), N ¼ 65]). Notably, both the TRFs [Fig. 2(c)]
and corresponding HRFs [Fig. 2(f)] appear to have distinct dis-
tributions of time courses for the two animals, suggesting that
both kernels carry physiologically significant information about
neurovascular coupling that varies among individuals.

Even though the model fits the measured data well overall,
we wondered if our forcing the fitted TRF to have a fixed ampli-
tude independent of stimulus strength or spiking might obscure
a real interaction between the task-related component and visual
stimulation. We checked by testing the residual left unpredicted
by spiking: after getting the optimal HRF+TRF, we tested the
difference between measured hemodynamics [Fig. 1(a1)] and
the optimal prediction from spiking alone [Fig. 1(b2)]. If
there were some interactions, this residual [Fig. 2(d), upper
panel] would scale with the measured spiking and, by extension,
with the prediction from spiking since the prediction scales lin-
early with spiking [see Eq. (1)]. While a regression fit appears to
show some scaling for this particular experiment [Fig. 2(d),
lower panel], similar analyses over the full set of experiments
fail to show any systematic relation between the unpredicted
residual and spiking. This result supports our basic premise
that the TRF reflects a mechanism of hemodynamic control in-
dependent of local visually stimulated spiking.

3.3 Optimal TRF Tracks the Fixation Schedule
When Stimulation and Fixation Timing Are in
Conflict

We wanted to test the utility of our model in cases where the
fixation task and the stimulation had different schedules, with
the stimulus being presented at one period while the animal fix-
ated at a different period (e.g., a faster multiple of stimulation).
The typical response is illustrated in Fig. 3. For both sets of tri-
als, the monkey received identical visual stimulation [gratings,
with contrasts of 0% (blank), 12.5% and 100% in block-
randomized order, presented every 30 s]. However, in one
case the animal’s task consisted of 15-s fixation trials, resulting
in doublets of these shorter trials per stimulation cycle [Figs. 3
(a1)–3(a3)]; in the other, the animal had triplets of 10-s fixation
trials per stimulation cycle [Figs. 3(b1)–3(b3)] (the animal saw a
blank screen for the unstimulated fixations). The spiking
responses largely follow the 30-s stimulation schedule, as
expected [Figs. 3(a1) and 3(b1)]. By contrast, the hemodynam-
ics shows prominent fluctuations at the faster 15- or 10-s fixa-
tion period [Figs. 3(a2) and 3(b2)]. Similar disjunctions between
timing of hemodynamic and spiking responses were seen in all
such experiments (N ¼ 9 experiments in monkey T. Analyzing
sequences of correct trials only. These data were analyzed earlier
using the blank-subtracted approach; see Fig. 5 of Ref. 16).

We based the HRF+TRF model on the distinct time courses
of the spiking and hemodynamic responses. For the spiking, we
used a standard gamma-variate HRF and 30 s for the overall
period. However, the TRF Fourier fundamental was initialized
at the shorter (15 or 10 s) fixation period for the fit, giving a

doublet or triplet of TRF fundamentals, respectively, for each
stimulation cycle. These models fit the measured results well,
with high R2 and small residuals [Figs. 3(a2) and 3(b2)]. The
optimal HRFs [Figs. 3(a3), 3(b3), lower panels] had time
courses well in the range for monkey T [compare τ, W with
the range over experiments, Fig. 2(f)]. Strikingly, the optimal
TRFs followed the fixation period closely, with high amplitude
that dominated the overall hemodynamic response [Figs. 3(a3),
3(b3), lower panels]. This observation again underscores our
basic contention that the TRF reflects a behaviorally driven,
as opposed to a stimulus-evoked, mechanism of brain hemo-
dynamic control.

3.4 HRF+TRF Fit is More Robust to Fluctuations
than Blank-Subtracted

We wanted to evaluate the strengths of our current approach rel-
ative to the earlier blank-subtracted one. An important issue
was: how robust are the fitted model parameters to input fluc-
tuations? This issue is particularly relevant when fitting to brain
hemodynamic responses given their large trial-by-trial variabil-
ity. We surmised that the HRF+TRF fit would be more robust
since the blank-subtraction step in the earlier approach unavoid-
ably added any fluctuations in the blank response to those in
all other trials. To test robustness, we simulated fluctuations
in the input data using a bootstrap procedure to generate 200
sample data sets per experiment (see Sec. 2.7); we then fit each
sample using both HRF+TRF and blank-subtracted approaches.
To quantify and compare the robustness of the two fitting
approaches, we considered two measures: (1) how variable is
the fitted optimal HRF over the population of bootstrap sam-
ples? and (2) how variable is the R2, over the same population?
For both measures, the less variable the result, the more robust
the fit.

With both measures, the HRF+TRF fits were significantly
less variable and, thus, more robust than blank-subtracted
(Fig. 4). This is illustrated with a representative data set in
the upper four panels of Fig. 4. The two approaches to fitting
gave essentially identical HRFs with the full data set [dark black
traces in Figs. 4(a1), 4(a2)]. On the other hand, HRFs for the
sample data sets (gray lines) were considerably less variable
for the HRF+TRF fits. This led to a 10× lower standard
deviation in the distribution of HRF mismatch values (normal-
ized sum squared error, see Sec. 2.7) over the population of
bootstrap samples [Fig. 4(b1)] suggesting that these fitted
HRFs are 10× more robust to input fluctuations. Similarly,
the R2 from HRF+TRF fits were 8× more robust [Fig. 4
(b2)]. We quantified the statistical significance of this improved
robustness as the probability of the null hypothesis, that the two
fits had the same dispersion, against the alternate hypothesis that
the blank-subtracted fits had a higher dispersion. The corre-
sponding p values were p < 10−47; (HRF) and p < 10−12

(R2), (single-tailed Ansari–Bradley test, N ¼ 200; see Sec. 2.7).
Similar results were obtained over the body of experiments.

Optimal HRFs were significantly more robust (at p < 0.05, sin-
gle-tailed Ansari–Bradley test) for the HRF+TRF as versus
blank-subtracted fits, for 86% of the experiments (56 of 65).
For the R2, the corresponding fraction came to 89% of the
experiments (58 of 65). This improved robustness was under-
scored by pairwise comparisons of the two fits per experiment,
over the full body. This showed a 2.5× greater robustness
in HRF overall when fitted using HRF+TRF [Fig. 4(c1)] and
a 4.2× greater robustness in R2 [Fig. 4(c2)], significant to
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p < 10−9 (HRF) and p < 10−11 (R2) as estimated with a
Wilcoxon signed rank test, N ¼ 65.

3.5 HRF+TRF Model Fits the Data Best

We wondered if, in addition to being more robust, the HRF+
TRF model also give better fits, i.e., with higher (R2) compared
to those using our earlier blank-subtracted approach. Making
this comparison is not straightforward because the two models
have different numbers of parameters. One standard approach is
to compare not R2 but rather the “adjusted R2”, which discounts
the improvement that could result due to one model having
more parameters.33 However, calculating the adjustment factor
involves the total number of sample points that are assumed to
be independent. Our sample points (camera frames) are not in-
dependent because of the slow time course of the hemodynamic
response (scale of seconds) relative to the camera frame rate
(15 frames∕s) and a standard adjusted R2 could be misleading.

A useful alternative approach for model selection when para-
metric statistical tests are difficult is to use cross validation
(e.g., see Ref. 34). Since cross validation automatically dis-
counts for overfitting, it also discounts for any improvement
in R2 purely due to an increased number of parameters while
maintaining improvements due to model parameters that are
informative. Thus, for comparing R2, we used 50–50 cross val-
idation. We defined the R2 for a given model and experiment as
the median of the corresponding cross-validated sample R2. The
significance of a model comparison, per experiment, was quan-
tified as the probability “p” that the pairwise difference in
corresponding sample R2 is indistinguishable from the null
(see Sec. 2.8).

The comparison as defined above showed that the HRF+TRF
model fits consistently better than blank-subtracted, with higher
R2 overall [Fig. 5(a)]. In individual pairwise comparisons, one
quarter of the datasets (17 of 65) fits with significantly higher R2

in the current approach (p < 0.05); for another 20% (13 of 65),

Fig. 3 The TRF follows behavioral rather than stimulus-linked timing when the two are in conflict. (a1)–
(a3) Results from experiment where stimulus was presented every 30 s while the animal engaged in 15-s
fixation trials. (a1) Measured spiking per stimulus contrast. It has the expected 30-s period albeit with
a weak modulation at the fixation period: note the dip at 15 s as the animal fixates on a gray screen. (a2)
Corresponding hemodynamics. Note the prominent modulation at the 15-s fixation period in the mea-
sured response (main panel); this is well reproduced in the optimal prediction (inset, “Pred”), leading
to a good fit (R2 ¼ 0.97) and a small residual (“Residual” below main panel). (a3) Optimal fitted TRF
(fundamental period ¼ 15.7 s) and HRF (τ ¼ 4.3 s, W ¼ 3.9 s). (b1)–(b3) Same, for an experiment
with 10-s fixation trials (R2 ¼ 0.96; TRF fundamental period ¼ 10.7 s; HRF: τ ¼ 5.3 s, W ¼ 4.4 s;
Note: since the animal is allowed an 800-ms grace period to achieve fixation after cue onset, per fixation,
the actual overall period is ∼31.6 s for (a), 32.5 s for (b), slightly longer than the 30-s cued; all behavioral
times scale accordingly).

Neurophotonics 031223-8 Jul–Sep 2017 • Vol. 4(3)

Herman et al.: Simultaneously estimating the task-related and stimulus-evoked components. . .



Fig. 4 HRF+TRF fits are more robust than blank-subtracted fits to fluctuations in the input data. (a) and (b) Comparing variability of HRF+TRF
versus blank-subtracted fits over bootstrapped samples (N ¼ 200) for one example data set. (a1) Optimal fitted HRFs obtained with HRF+TRF fits.
Black: full data set; gray: individual bootstrapped samples. (b2) Optimal HRFs from blank-subtracted fits to the same data as in (a1), using the same
color convention. Note the much greater variability in bootstrapped HRF profiles compared to (a1). (b1) Quantifying the variability in bootstrapped
HRFs for each fittingmethod by comparing distributions of mismatch values (defined as normalized sum squared error of bootstrapped HRF relative to
the full HRF; see Sec. 2.7). Each data point corresponds to one bootstrapped sample, fitted separately using both approaches. Note the larger values
and much higher variability in HRF mismatches for the blank-subtracted fits. This variability, quantified as the standard deviation over the bootstrap
samples (N ¼ 200), is indicated in the figure. Red circle: median values (blank-subtracted: 0.0186, HRF+TRF: 0.0019; N ¼ 200). (b2) Comparing
variability inR2 for the fits to the same bootstrap samples, plotted pairwise for the two fittingmethods. Note, again, themuch higher variability (standard
deviation) for blank-subtracted fits. In both (b1) and (b2), p values indicate the significance of the blank-subtracted fits having higher dispersion,
against the null hypothesis that the dispersion equaled that of the HRF+TRF fits (one-tailed Ansari–Bradley test, N ¼ 200). Red circle: median values
(blank-subtracted: 0.66, HRF+TRF: 0.85; N ¼ 200). (c1) Box plots showing distributions of HRF variability [standard deviation of the mismatch, as in
(b1)] across experiments, for the two fitting approaches. Median values across experiments are represented by horizontal red bars and indicated
above each distribution’s upper edge. The bottom and top edges of each box represent the 25th and 75th percentiles, respectively. Values lying within
the whiskers extending to the most extreme are not considered outliers. Outliers (crosses: in red, online figure) exceed 1.5 times the interquartile
range. p values for equality of the distributions are indicated in the figures [Wilcoxon signed rank test, for pairwise comparisons across experiments
(N ¼ 65)]. Some outlier data points are not shown for ease of visualization: blank-subtracted has five outliers, HRF+TRF has six. All data were
included in the analysis. (c2) Box plots showing distributions of R2 variability [standard deviation as in (b2)] across experiments. Conventions as in
(c1), note, again that not all outliers are shown for ease of visualization. Blank-subtracted has two outliers, and HRF+TRF has five.
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p lies between 0.05 and <0.1 [Fig. 5(a)]. Overall, for 67%
(44∕65) the p < 0.2. The consistently higher R2 for HRF+
TRF was also reflected in the significance of a pairwise com-
parison per dataset across experiments [Fig. 5(a). p < 10−10

Wilcoxon signed rank test].
We wanted to test how important it was for the model to have

terms (e.g., TRF) independent of spiking in addition to those
operating linearly on spiking (HRF). As a control, we checked
if we could get good fits with no TRF but with more complex
HRF kernels, including components beyond the gamma-variate
core [Eq. (5) in Sec. 2.5; compare with Eq. (1); Fig. 6]. In par-
ticular, we considered a standard multicomponent HRFGammaprime

comprising a gamma-variate function and its first time
derivative31,32 [see Eq. (6) in Sec. 2.5 and Fig. 6(b)]. This was
compared to a single-component “gamma only” HRF [gamma-
variate only; no TRF, and no blank-subtraction, Figs. 6(c) and
6(d)]. The additional first-derivative term in the HRFGammaprime

was found to confer essentially no advantage relative to gamma
only. By contrast, HRF+TRF fits showed a dramatic improve-
ment relative to gamma only [Figs. 6(c), 6(d)]. While this con-
siders only one particular extension of the HRF and cannot
exhaustively cover all possible variants, the comparison pro-
vides compelling evidence that the model needs a spiking-inde-
pendent component such as the TRF term in our HRF+TRF
model; more complex HRFs acting on the local electrophysiol-
ogy alone, with no accompanying TRF, are unlikely to be
adequate.

3.6 Fit to LFP is Poorer than to Spiking

We showed earlier that the stimulus-evoked hemodynamic
response is predicted more accurately by concurrently measured
spiking than by LFP.17 This reflected the close match between
the contrast tuning of the hemodynamic and spiking responses,
versus that of the LFP. We checked if our current approach still
gives a better fit to spiking than to LFP, specifically gamma LFP

(30 to 90 Hz) since that was the most informative LFP measure
in our earlier study. The HRF+TRF model was fitted using the
measured LFP in a manner exactly like the fits to spiking illus-
trated in Fig. 1. The results show that as in our earlier study the
HRF+TRF fit to gamma LFP was poorer than to spiking (Fig. 7).
The example data set suggests, as before, that the poorer fit
reflects the poorer match in contrast tuning. The spiking
response [Fig. 7(a2), inset] increases in roughly equal steps
for each doubling of the stimulus contrast, matching that of
hemodynamics [Fig. 7(a1)]; gamma LFP has smaller steps at
low contrast and larger steps at high contrast [Fig. 7(a3), inset;
the contrast tuning is not plotted here; see our earlier results17].
These mismatches in contrast tuning are reflected in the corre-
sponding predictions and lead to worse fits for this example
[Figs. 7(a2), 7(a3), each compared with Fig. 7(a1)] and across
experiments [Figs. 7(b) and 7(c)].

4 Discussion
We describe a method for parametrically estimating both stimu-
lus-evoked and task-related components of brain hemodynamic
responses (specifically, CBV) recorded while subjects are
engaged in a temporally predictable task. The stimulus-evoked
component is modeled as the convolution of concurrent local
spiking with a gamma-variate HRF kernel. The task-related
component is modeled as a TRF Fourier series kernel—opti-
mally comprising the first two frequencies, i.e., the fundamental
and the first harmonic—convolved with delta functions aligned
to trial onsets. This HRF+TRF model contrasts with our earlier
blank-subtracted approach where we parametrically estimated
only the stimulus-evoked component and defined the task-
related portion as the unpredicted residual.16,17 We evaluated
the current model by fitting it to earlier published data and com-
pared the fits to ones using the blank-subtracted approach, as
well as to fits using three alternate models. All fits employed
identical procedures for fitting and for assessing goodness of
fit (R2).

Fig. 5 The HRF+TRF model fits measured hemodynamics better than blank-subtracted. (a) R2 values
for HRF+TRF fits compared with blank-subtracted fits. R2 data points shown are the medians of the
distributions of cross-validated sample R2 for the model and experiment; significance (p value) is quan-
tified as the probability of the null hypothesis that the cross-validated R2 (HRF+TRF) – R2 (blank-sub-
tracted) = 0 (see Sec. 2.8). Each point corresponds to one experiment; the red circle is the median R2

across experiments (blank-subtracted: 0.76, HRF+TRF: 0.82; N ¼ 65). Data points are color-coded by
significance of this improved fit per experiment (see key in figure panel for p values). Pairwise compari-
son per experiment (N ¼ 65) using a Wilcoxon signed rank test further confirms that the HRF+TRF fit is
better than blank-subtracted (the null hypothesis that they are equal has p < 10−10. (b) Box plots showing
the same distributions of R2. Conventions for box plot as in Figs. 4(c1) and 4(c2).
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The HRF+TRF fits were uniformly good, with high R2 and
small residuals. The task-related component that emerged from
our fits showed no residual relationship to stimulus-evoked spik-
ing or hemodynamics, over a comprehensive dynamic range of
stimulated responses [Figs. 2(d), 2(e)]. This lack of interaction
supports our premise that the TRF is not predicted by local
spiking and reinforces our decision to model the TRF as a
trial-aligned term of fixed amplitude independent of stimulus
intensity [Eq. (3)]. Intriguingly, the optimal TRF, while consis-
tent for a given animal in this particular task, had distinctly

different time courses for the two animals. Understanding this
difference likely involves a comprehensive study of the behav-
ioral significance of the TRF. Such a study is outside the scope
of the current paper, but we discuss it in the last paragraph in the
context of future directions. In contrast to the good HRF+TRF
fits, attempts to predict hemodynamics from spiking without
using a TRF gave uniformly poor fits. There was relatively little
difference in R2 whether fitting with a single gamma-variate
HRF (gamma only) or a more complex HRF with additional
terms [gamma prime; Figs. 6(c) and 6(d)] underscoring the

Fig. 6 Gamma prime HRF gives poor fits, with little improvement due to the additional first-derivative term
in HRFGammaprime. (a) Measured hemodynamics. Inset shows concurrent spiking. (b) Optimal prediction
from spiking using gamma prime HRF. Inset shows the optimal HRF: both as separate “gamma only” and
“first derivative only” components, and added to give the full optimal HRFGammaprime. Note two different
Y -axis scales: for the full HRF and the gamma only on the left, and for first derivative only on the right. The
amplitude of the first derivative only term is an order of magnitude smaller than that of gamma only,
making a correspondingly smaller contribution to the prediction. (c) Two sets of pairwise comparisons
over the body of experiments to gamma only R2 (i.e., gamma-variate HRF with no TRF and no blank-
subtraction). Fits to gamma prime (circles) shows little improvement due to the additional first derivative
term in the HRF [Wilcoxon signed rank test: p ¼ 0.0025; red circle: median across experiments (gamma
prime: 0.37; gamma only: 0.38, N ¼ 65)]. By contrast, fits to HRF+TRF (diamonds) show a striking
improvement due to the spike-independent TRF term (Wilcoxon signed rank test: p < 10−11; red dia-
mond: median across experiments: HRF+TRF: 0.82; gamma only: 0.38; N ¼ 65). R2 and their signifi-
cance (p values) per experiment calculated using cross validation as in Fig. 5. p values color coded as
shown in panel key. (d) Box plots showing the same distributions ofR2. Conventions for box plot same as
Figs. 4(c1) and 4(c2).
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important contribution of the TRF to the prediction. Additional
evidence of the distinct, behavioral origins of the TRF came
from experiments where the behavioral schedule of the task con-
flicted with the schedule of visual stimulation. In such cases, the
optimal TRF closely matched behavioral rather than stimulation
timing. These results suggest that the TRF reflects a neural
mechanism of brain hemodynamic control (neuromodulatory?
feedback?) distinct from solely stimulation-linked mechanisms
and related spiking.

Comparison with the earlier blank-subtracted approach
shows that HRF+TRF fits are significantly more robust to fluc-
tuations and are better (give higher R2) than our earlier values.
The HRF+TRF model thus provides a better approach for ana-
lyzing hemodynamic recordings made in a task context. As a
corollary, we obtained better fits when using spiking rather
than LFP as the regressor for the stimulus-evoked component
of the HRF+TRF fit, corroborating an analogous finding with
our earlier approach.17

The specifics of the current work suggest ways to further
develop and refine the HRF+TRF model. We wanted to start
here with the simplest functional links between stimulus-evoked
and task-related responses. We thus controlled the levels of spik-
ing and evoked hemodynamics using large, uniform gratings
where only the contrast was varied. This was intended to change
activity monotonically over a more-or-less homogeneous mix of

active neurons. Ongoing work in the lab uses more complex spa-
tially inhomogeneous stimuli: small point stimuli, center-sur-
round stimuli with varying centers and surrounds, etc. These
are intended to test our model with more complex local varia-
tions in excitation, inhibition, and lateral interactions. The
stimuli in the work presented here are also strictly periodic and
use a blank (0% contrast) in the stimulus set. The blank is not
crucial although it helps extend the dynamic range of stimula-
tion strengths; as long as responses can be combined linearly,
our model can be used over any range of stimulus strengths
[note, in passing, that our blank already includes a large fixa-
tion-related spiking and hemodynamic response Fig. 1(a2)].
Having periodic stimuli make the model simple, and they are
a good model for block-design tasks. However, initial work
in our lab shows that randomly cued trials of variable length
also evoke large, reproducible task-related responses. After
some binning by time ranges, these could also be analyzed
using our approach. Thus, this approach has the potential for
being extended over a much broader range of tasks and visual
stimuli, and the current work is intended to just provide a base.

Analysis tools, such as the one we use here, are likely to
become more important in brain imaging with the increasing
recognition that task-related and other endogenous hemo-
dynamic responses contribute significantly to measured hemo-
dynamics. Such responses, while long noted,35 were considered

Fig. 7 Spiking predicts hemodynamics better than gamma LFP. (a1)–(a3) Example dataset. (a1)
Measured hemodynamics compared to predictions using spiking (a2) versus gamma LFP (a3) as regres-
sor. The regressors are shown as insets in the top right of each panel. Corresponding R2 values are
shown for each fit. (b) Comparing R2 for HRF+TRF fits using the LFP, versus spiking, across experi-
ments. Each point corresponds to one experiment. While three data points showed significantly better fits
to LFP (“LFP > spiking”), the much larger majority were better fit to spiking, or trended in that direction,
leading to substantially better fits to spiking overall (p < 10−6, Wilcoxon signed rank test). Red circle:
median values (spiking: 0.82, LFP’: 0.75; N ¼ 65). (c) Box plot shows the R2 values shown in (b).
R2 and p values based on cross validation as in Fig. 5.
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a global signal “of no experimental value”36 that added unin-
formative variance37 and needed to be removed.4,38 More recent
results suggest otherwise. Regressing these components away
can change the functional relationships and even the sign of
the nominal signal.39 Task-related components are also behav-
iorally relevant. They entrain to task timing,9,23,24,40 correlate
with gauges of brain state such as pupil dilation,5 and carry diag-
nostic information about neuropsychiatric disorders such as
schizophrenia.41 Preliminary results from our lab show that
our measured TRF is strongly modulated by anticipation, reward
size, and task performance.9,26 It also appears to change its shape
and timing considerably over the course of training that the ani-
mal receives (unpublished data; note, in this context, that the two
animals used in this paper were at very different stages of train-
ing; one had just started while the other had worked for over four
years on visual tasks). Tools, such as the one here, should help
the field to better parametrize behavioral correlates of endog-
enous task-related responses and, thus, focus even more sharply
on understanding their significance. We developed this tool
for use with spiking data, which restricts its application pri-
marily to animals. But it can be extended to human fMRI using
realistic models of the spiking response to the stimulus under
consideration.36,42 We hope that such efforts would lead to
greater insights in our overall understanding of fMRI measure-
ments and brain activity.

Disclosures
No conflicts of interest, financial or otherwise, are declared by
the authors.

Acknowledgments
This paper was a tribute to Amiram Grinvald for multiple rea-
sons. First, the brain imaging technique that we use, ISOI, was
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to use these intrinsic signals for brain imaging48 after noting
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were dominated by a slow response that, he surmised, was
intrinsic in origin. ISOI has proven valuable as it can image
brain activity over many mm at a spatial resolution
(∼100 μm)21 appropriate for revealing cortical columns without
needing foreign agents, such as dyes. It has thus been used
extensively to map sensory systems,50 to study long-term plas-
ticity,51 as a preliminary mapping stage for anatomical52 or two-
photon imaging53 studies, and even for intraoperative imaging in
humans.54,55 It still remains in use after three decades (e.g., see
Refs. 56–58). In addition, ISOI is a valuable tool for investigat-
ing the basis of fMRI, as first shown in a series of papers by
Grinvald.59–64 Various processes, such as light scattering or bire-
fringence, and changes in tissue chromophores contribute to
the ISOI under different experimental conditions.43–47 How-
ever, in-vivo ISOI in the visible spectrum primarily measures
changes in absorption by hemoglobin and thus reflects local
hemodynamics.22,59 Estimates of blood oxygenation and blood
volume responses obtained from multiwavelength ISOI40,59,65–68

correspond well with values obtained using BOLD and CBV-
weighted fMRI.69,70 It is also technically straightforward to
combine ISOI with electrode recordings,8,52 unlike fMRI where

the high and rapidly switching magnetic fields make concurrent
electrophysiology more challenging.71 ISOI is thus a useful
model for fMRI, and Grinvald’s initial work paved the way
for a large number of other groups who have used ISOI to inves-
tigate brain hemodynamics and thereby gain important insights
into fMRI.5,66–69,72–80 Finally, we note that our finding of a
stimulus-independent task-related hemodynamic response in
the alert macaque visual cortex was also foreshadowed by
Grinvald. In an early publication on ISOI in alert macaques,4

he reported dividing the responses collected during stimulated
trials by blank-trial responses—in effect, subtracting away the
common task-related response as in our own earlier blank-sub-
tracted approach—to visualize stimulus-evoked responses. This
makes it particularly fitting to present our work in this tribute to
Amiram Grinvald. We thank Liam Paninski for proposing the
approach to analysis (parametrically fitting both task-related
and stimulus-evoked components of hemodynamics, with the
task-related response being modeled as a Fourier series) that
forms the basis of this paper. The work was supported by the
National Institutes of Health (NIH) Grant Nos. R01EY025330,
R01EY025673, R01 EY019500, and R01 NS063226 to A.D.,
and a National Research Service Award to Y.B.S. as well as
grants from the Columbia Research Initiatives in Science and
Engineering, the Gatsby Initiative in Brain Circuitry, and The
Dana Foundation Program in Brain and Immuno Imaging
and the Kavli Institute for Brain Science (to A.D.). B.L. received
a fellowship from the the Italian Academy for Advanced Studies
in America, Columbia University. M.M.B.C. was supported by
Fundação para a Ciência e a Tecnologia, scholarship SFRH/
BD/33276/2007. Thanks to Maria Bezlepkina and Elena
Glushenkova for technical support and lab management and
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