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Classification of material and surface roughness
using polarimetric multispectral LiDAR
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ABSTRACT. Multispectral light detection and ranging (LiDAR) is an emerging active remote sens-
ing technique that combines distance and spectroscopy measurements. The reflec-
tance spectrum is known to enable material classification. However, the spectrum
also depends on other surface parameters, particularly roughness. Herein, we pro-
pose an extension of multispectral to polarimetric multispectral LiDAR and introduce
unpolarized and linearly polarized reflectance spectra as additional features for clas-
sifying materials and roughness. Using a bench-top prototype instrument, we dem-
onstrate the feasibility and benefit of acquiring unpolarized and linearly polarized
reflectance spectra. We analyze and interpret the spectra obtained with two different
spectral resolutions (10 and 40 nm) from measurements on test specimens consist-
ing of five different materials with two different levels of surface roughness. Using a
linear support vector machine, we demonstrate the potential of the different features
for enabling material and roughness classification. We find that the unpolarized
reflectance spectrum is well suited for classifying materials, and the linearly polar-
ized one for classifying roughness. In both cases, the performance is much better
than using a standard reflectance spectrum offered by multispectral LiDAR. We
identify polarimetric multispectral LiDAR as a technology that may significantly
enhance surface and material probing capabilities for remote sensing applications.
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1 Introduction
Multispectral light detection and ranging (LiDAR) combines contactless distance measurement
and remote spectroscopy. It provides three-dimensional (3D) spatial data and information about
the scanned materials through their reflectance spectra. This multimodal sensing is beneficial for
applications in various fields, such as remote sensing,1 digitization of the environment,2 autono-
mous driving,3 mining,4 and smart agriculture.5 The material probing capability of multispectral
LiDAR, however, is often impaired by different surface finishing, especially due to the impact of
roughness on reflectance.6,7 In contrast, surface roughness is itself also an important characteristic
of the scanned objects.8–11 Conventional optical techniques for independent roughness measure-
ment, such as interferometry or confocal microscopy, are limited to small working areas. In many
practical applications involving large scenes or surfaces whose roughness needs to be assessed
remotely, they are thus not applicable.12 For instance, comprehensive building information
modeling (BIM) requires precise 3D geometry13 and semantically rich material information14 for
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as-built BIM15 in the construction phase and as-is BIM16 in heritage protection17 and circular
construction.18 The impact of surface roughness weakens accurate material information extraction
from the reflectance spectrum. Conversely, surface roughness information of different building
components is valuable for quality control in construction10,19 and degradation assessment of con-
struction materials.11,20 Therefore, decoupling the impacts of material composition and surface
roughness on the reflectance spectrum measured by multispectral LiDAR is highly beneficial
to extract rich and accurate material information.

Some attempts have been proposed to work around this limitation in LiDAR sensing.
Previous investigations either assumed the rough target surface to be a perfectly Lambertian
reflector21 or estimated the surface roughness from the parameters of a complex reflection model
determined by measuring reflectance spectra at different incidence and observation angles
(angle-resolved scattering approach).22,23 Really Lambertian surfaces, however, are rarely found
in practice,24 and the angle-resolved scattering approach is laborious and model-dependent.
Polarimetry is a suitable technology that can be adapted to LiDAR sensing to enable surface
roughness estimation at each measurement point. Investigations on monochromatic polariza-
tion-coded LiDAR demonstrated the relation between the degree of linear polarization
(DoLP) of the backscattered light and the target surface roughness. This relation was already
used for classifying highly specular car paints and certain diffuse man-made and natural
targets.25 Our previous work on a novel polarimetric multispectral LiDAR also showed the rela-
tionship between DoLP and material specularity.26

The physical basis for the polarimetric approaches was described and discussed by Wolff
and Boult.27 In a LiDAR system employing a linearly polarized laser source, the mechanism of
light–matter interaction consists of two procedures: (1) specular reflections on the irregular sur-
face microfacets, and (2) volume scattering of light penetrated into the target subsurface. The
reflections on the surface preserve the linear polarization of the laser source, thus contributing a
polarized component to the backscattered light. Conversely, the volume scattering depolarizes
the penetrated light and thereby contributes an unpolarized component to the backscattered
signal.

Polarimetric LiDAR incorporates polarimetry into LiDAR technology and has been exten-
sively applied in atmospheric sensing.28–33 A few attempts of polarimetric LiDAR focus on
enhancing the detection of solid targets,34,35 such as vegetation,36–39 distant constructions,40 and
objects relevant to autonomous driving in low-visibility conditions.25,41 However, established
polarimetric LiDARs are only single-, dual-, or triple-wavelength, being thus largely limited
in extracting surrounding material information accurately. Although passive and active spectral
polarimeters42,43 can tackle these challenges, a comprehensive 3D model with rich material infor-
mation requires additional co-registration between the spectral polarimetric data and 3D geom-
etry data acquired independently.

In this paper, we adapt polarimetry to multispectral LiDAR so that a single polarimetric
multispectral LiDAR instrument combines polarimetry, active remote spectroscopy, and
LiDAR. From each measurement point, the data of 3D geometry, linearly polarimetric character-
istics, and multispectral reflectance (up to 33 wavelengths) can be directly obtained without any
data co-registration. Furthermore, we introduce the concept of linearly polarized and unpolarized
reflectance spectra along with a method to obtain them from a polarimetric multispectral LiDAR
system. We demonstrate this using a lab prototype of such a system. Data obtained from 10 test
specimens of different materials and roughness levels allow us to show that the unpolarized and
linearly polarized reflectance spectra actually decouple the impacts of material and surface
roughness, and thus improve the performance of material and roughness classification as com-
pared to processing a standard reflectance spectrum only. Moreover, an initial analysis of the
impact of the applied spectral configuration on material and roughness classification was carried
out by comparing the performance of two spectral configurations with different resolutions. The
LiDAR instrument also provides spectrally resolved high-precision distance measurements.
Details on the measurement process, the quality, and potential use of these data, with a particular
focus on distance, have been published already.44,45 Herein, we focus exclusively on the use of
the various reflectance spectra derived from the instrument’s output.

The rest of the paper is structured as follows: In Sec. 2, we introduce the standard, unpo-
larized, and linearly polarized reflectance spectra and define the approaches to obtain them. In
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addition, our experimental prototype of a multispectral LiDAR system and the upgraded polari-
metric multispectral LiDAR are depicted. The investigated 10 material specimens in 5 material
categories and 2 roughness levels are presented in Sec. 3, along with the method for collecting
different multispectral features from these material specimens. In Sec. 4, we show and discuss the
multispectral features obtained from standard and from polarimetric multispectral LiDAR in two
different spectral configurations. We analyze their respective benefit for classifying material and
surface roughness using a linear support vector machine (SVM).46,47 Finally, we conclude and
give a brief outlook on future work in Sec. 5.

2 Experimental Setup and Determination of Spectra
The experimental setup of the multispectral LiDAR45 (see Fig. 1) includes a supercontinuum
optical frequency comb (SC-OFC) laser source with linear polarization. The SC-OFC output
transmits through one of the band-pass filters mounted in a bank of filter wheels. A portion
of filtered linearly polarized laser light illuminates the target surface (specimen) 0.5 m away
from the focusing element with approximately normal incidence angle. A parabolic mirror col-
lects the light backscattered from the target and focuses it on the probing avalanche photodiode
(APD). The other portion of the filtered laser beam is focused on the reference APD. The distance
of the target is calculated from the phase difference of the electrical beat notes output by the two
APDs.48 Forty band-pass filters mounted in eight filter wheels provide two different spectral
configurations (Fig. 2) within the spectral range of the SC-OFC. Each six-position filter wheel
has five positions mounted with filters and one position empty. By rotating the filter wheels, only
the corresponding band-pass filter at the selected spectral channel is in the optical path. Seven
band-pass filters with 40 nm bandwidth (BW) and central wavelengths from 600 to 900 nm

Fig. 1 Experimental setup. (a) Picture of the experimental setup (SC-OFC, supercontinuum optical
frequency comb; FWs, filter wheels; PM, parabolic mirror; APDref, reference avalanche photo-
diode; P2, rotating linear polarizer; APDprob, probing avalanche photodiode; S, flip-in reflectance
standard; T, target). (b) Schematic diagram of the experimental setup (P1, linear polarizer; BS,
beam sampler; M, mirror; FL, focusing lens).

Fig. 2 Spectral configurations. The colorful area shows the optical spectral density of the super-
continuum optical frequency comb at different optical wavelengths λ. SCa;b denotes the spectral
channel with a nm central wavelength and b nm spectral BW. (a) Spectral configuration with 40 nm
BW. (b) Spectral configuration with 10 nm BW.
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constitute one spectral configuration. Thirty-three band-pass filters with 10 nm BW and central
wavelengths between 580 and 900 nm constitute the other spectral configuration.

According to the radar equation,49,50 the reflectance R of a target can be expressed as a scaled
ratio of the received optical power Pr and the transmitted optical power Pt of the LiDAR system
as R ¼ K · Pr∕Pt. The coefficient K is not a constant but depends on various parameters describ-
ing the measurement geometry (mainly incidence angle and ranging distance), atmospheric
attenuation, and certain properties of the measurement system (e.g., aperture of the collection
optics, wavelength of the laser, responsivity of the optical detector). The backscattered light
detected by the probing APD yields a measure of the optical intensity I, which is proportional
to Pr. We thus use the observed optical intensity as a proxy of the respective optical power in the
rest of the paper.

The power of the supercontinuum laser source is unstable over periods of time longer than a
few minutes.51 We account for this along with all the parameters affecting K using time-multi-
plexed measurements (every 5 s) on a flip-in reflectance standard (Spectralon with 60% constant
reflectance on the spectral range of interest). We estimate the reflectance of the target at a specific
wavelength λ as

EQ-TARGET;temp:intralink-;e001;114;544RðλÞ ¼ ηratioðλÞ
ITðλÞ
ISðλÞ

RS; (1)

where RS ¼ 60% is the known and constant reflectance of the reflectance standard, ηratioðλÞ ¼
KTðλÞ∕KSðλÞ is the ratio of the parameters K which may be different for target and reflectance
standard, if those are at different distance or viewed at different angles of incidence (AOI). ITðλÞ
and ISðλÞ are the received optical intensities from the target and the reflectance standard, respec-
tively. These optical intensities can be derived from the amplitudes Aprob of the electrical beat
notes output by the probing APD and from the functional relationship I ¼ GðAprobÞ. This func-
tion, as well as the determination of ηratioðλÞ, is explained in an earlier publication.45 The reflec-
tances measured in this way for the 7 and 33 spectral channels form the standard reflectance
spectrum RðλÞ of the target for the 2 spectral configurations, respectively.

The polarimetric multispectral LiDAR26 is adapted from the multispectral LiDAR prototype
by setting a rotating linear polarizer (as analyzer) P2 in front of the probing APD. The polari-
zation direction of the backscattered light can then be analyzed by measuring the optical inten-
sities at the probing APD as a function of the rotation of the analyzer. The additional polarization
analyzer reduces the optical intensity detected by the probing APD by about 50%, which
degrades the distance measurement precision with 1 ms integration time with respect to the
0.1 mm reported in our previous publication.45 The distance precision including polarimetry
is nevertheless still better than 0.2 mm for most spectral channels.

We configure the system such that the analyzer rotates to four directions in 45 deg steps.
Without loss of generality, we use the first direction as reference direction and define it as 0 deg.
Thus the four measured optical intensities are denoted by I0 deg, I45 deg, I90 deg, and I135 deg. The
Stokes parameters (S0, S1, S2, and S3)

52 describe the polarization state of light. Since the laser
source is linearly polarized and the backscattered light is only analyzed by a rotating linear polar-
izer in this setup, we can neglect S3. According to the modified Pickering method,52 the remain-
ing Stokes parameters can be obtained from the optical intensities as

EQ-TARGET;temp:intralink-;e002;114;217S0 ¼
I0 deg þ I45 deg þ I90 deg þ I135 deg

2
; S1 ¼ I0 deg − I90 deg; and S2 ¼ I45 deg − I135 deg:

(2)

A more comprehensive understanding of the polarimetric characteristics of targets can be
achieved by adding linear and circular polarization control at the emitter and receiver.30,34,53,54 In
this work, we only examine the linear polarization status at the receiver to decouple the impacts
of surface roughness and material composition on the backscattered reflectance spectrum. For the
sake of readability, references to polarimetric features in the remainder of the document thus
represent only linear polarization characteristics even if not specified explicitly. The modified
Pickering method was chosen herein for practical reasons prioritizing measurement precision
over acquisition time.52 In the case of applications with strong time requirements, the detection
procedure for both the Pickering method and Fessenkov’s method can be sped up by acquiring
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intensities from only three analyzer angles while sacrificing measurement precision.52,55 Further
reducing to two analyzer angles is feasible through dual-polarization analysis, which is widely
exploited in atmospheric polarimetric LiDAR.28,29,56 This approach, however, requires a pre-
alignment of the rotating analyzer to determine the co-polarization and cross-polarization direc-
tions. Given that 0 deg in I0 deg is the arbitrary reference direction of the rotating linear analyzer
and not that of the co-polarization direction of backscattered light, the polarimetric analysis pre-
sented in this paper is not pre-aligned to determine the co-polarization and cross-polarization
directions. The intensity measurement with the linear analyzer rotating at 45 deg and 135 deg
is thus needed to determine the co-polarization direction, which we refer to as the angle of linear
polarization (AoLP)57 in this paper.

Based on these three Stokes parameters, the DoLP57 and the AoLP within the interval
ð−90 deg; 90 deg� can be calculated as

EQ-TARGET;temp:intralink-;e003;117;591DoLP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S21 þ S22

p
S0

(3)

and

EQ-TARGET;temp:intralink-;e004;117;541AoLP ¼ 1

2
arctan

�
S2
S1

�
: (4)

The AoLP represents the angle between the polarization direction of the backscattered light and
the reference direction of the linear polarizer. Using Malus’ law,57 we can express the four mea-
sured intensities as a function of the angle of the analyzer and of the linearly polarized and
unpolarized components (Ipol, Iunpol) of the backscattered light:

EQ-TARGET;temp:intralink-;e005;117;455I0 deg ¼ cos2ðAoLPÞIpol þ
1

2
Iunpol; (5)

EQ-TARGET;temp:intralink-;e006;117;409I45 deg ¼ cos2ð45 deg−AoLPÞIpol þ
1

2
Iunpol; (6)

EQ-TARGET;temp:intralink-;e007;117;381I90 deg ¼ sin2ðAoLPÞIpol þ
1

2
Iunpol; (7)

EQ-TARGET;temp:intralink-;e008;117;353I135 deg ¼ sin2ð45 deg−AoLPÞIpol þ
1

2
Iunpol: (8)

According to Eqs. (5)–(8), the unpolarized and polarized intensities of the backscattered light can
be derived as follows:

EQ-TARGET;temp:intralink-;e009;117;313Iunpol ¼

8>>>>><
>>>>>:

2 cos2ðAoLPÞI90 deg − 2 sin2ðAoLPÞI0 deg

cos2ðAoLPÞ − sin2ðAoLPÞ ; if jAoLPj ≤ 22.5 deg

or 67.5 deg < jAoLPj ≤ 90 deg

2 cos2ðAoLP − 45 degÞI135 deg − 2 sin2ðAoLP − 45 degÞI45 deg

cos2ðAoLP − 45 degÞ − sin2ðAoLP − 45 degÞ ; if 22.5 deg < jAoLPj ≤ 67.5 deg;

(9)

EQ-TARGET;temp:intralink-;e010;117;224Ipol ¼

8>>>>><
>>>>>:

I0 deg − I90 deg

cos2ðAoLPÞ − sin2ðAoLPÞ ; if jAoLPj ≤ 22.5 deg

or 67.5 deg < jAoLPj ≤ 90 deg

I45 deg − I135 deg

cos2ðAoLP − 45 degÞ − sin2ðAoLP − 45 degÞ ; if 22.5 deg < jAoLPj ≤ 67.5 deg :

(10)

The conditional functions given in Eqs. (9) and (10) are introduced to avoid values close to 0
in the denominator, which would amplify the uncertainty in the intensity measurements.
Similarly to the definition of the standard reflectance spectrum RðλÞ given in Eq. (1), we intro-
duce two quantities related to the unpolarized and linearly polarized intensities, determined for
different wavelengths λ, and denote them herein as the unpolarized and polarized reflectances:
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EQ-TARGET;temp:intralink-;e011;114;736RunpolðλÞ ≔ ηratioðλÞ
Iunpol;TðλÞ
Itotal;SðλÞ

RS; (11)

EQ-TARGET;temp:intralink-;e012;114;692RpolðλÞ ≔ ηratioðλÞ
Ipol;TðλÞ
Itotal;SðλÞ

RS: (12)

Here, Itotal;S is the total intensity received from the reflectance standard and is equal to the first
Stokes parameter S0;S observed for the reflectance standard. The unpolarized and polarized
reflectances measured in this way for different spectral channels form the unpolarized reflectance
spectrum RunpolðλÞ and the polarized reflectance spectrum RpolðλÞ of the target.

3 Material Specimens and Data Collection
To indicatively analyze the performance of the polarimetric multispectral LiDAR in classifying
material and surface roughness, we prepared two specimens of each of five materials, one for
each of the two levels of surface roughness per material. The five materials are three types of
plastic and two kinds of stone, namely polypropylene (PP), polyethylene (PE), polyvinyl chlo-
ride (PVC), limestone, and sandstone. The specimens were treated with an electric angle grinder
and sandpaper suitable for plastics and stones with grit numbers P80 (rougher) and P400
(smoother), creating two clearly distinct surface roughness levels per material.

A picture of the 10 specimens is given in Fig. 3(a). The different surface roughness can be
recognized in close-up photos obtained using a microscope [see Fig. 3(b)]. For the three plastic
materials, the smoother surfaces (bottom row) can be characterized by a more homogeneous
visual appearance, lower standard deviation of the surface height, and a smaller horizontal cor-
relation length (defining “horizontal” as the mean orientation of the sample surfaces visible in the
figure, and “height” as orthogonal to that direction). In contrast, a smoother surface for the stone
materials (limestone and sandstone) means that the different mineral grains are exposed more
clearly, thus leading to a visually more heterogeneous appearance. Although the same sandpaper
is applied to all material specimens for a given surface roughness (P80 or P400), the surface
morphology and thus final roughness are not the same for the different materials because of
the different microstructure and densities. Herein, this is not a problem because we will restrict
ourselves to distinguishing different levels of surface roughness. An extension of the approach to
roughness quantification is left for future work.

For each specimen, we measured the reflectance spectrum RðλÞ, unpolarized reflectance
spectrum RunpolðλÞ, and polarized reflectance spectrum RpolðλÞ at 20 different surface positions
for both spectral configurations. This allows assessment of the uncertainty of the measurements
resulting from measurement noise and from inhomogeneity across the surfaces. We then applied
a linear SVM to classify different materials and roughness levels, and assessed the classification
performance using cross-validation.58

Fig. 3 Material specimens of five materials (PP, PE, PVC, limestone, and sandstone) in two levels
of surface roughness (rough: P80; smooth: P400). (a) Picture of the material specimens.
(b) Microscopic images of the material specimens with 100× magnification.
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4 Results

4.1 Multispectral Features
The reflectance spectrum RðλÞ (Fig. 4) represents multispectral features that could also be
obtained using conventional multispectral LiDAR. The similarly red visual appearance of the
chosen PE and PVC samples (see Fig. 3) is caused by pigments absorbing green and blue light.
This is also indicated by the low reflectance for PE and PVC around 600 nm in the spectral
signatures obtained using our prototypical LiDAR system, and demonstrates an obvious impact
of the material on the features. To different extents, higher reflectance of the smoother surfaces
(P400) compared to the rougher ones (P80) is apparent for all materials. The more heterogeneous
surface of the smoother stone specimens (limestone and sandstone) leads to a significantly larger
standard deviation because of the inhomogeneity across the surface. However, the reflectance
spectra for the 10 specimens overlap with each other in the range of wavelengths provided by our
setup, and independent classification of material and roughness does not seem possible using
only these data in either spectral configuration.

4.2 Polarimetric Multispectral Features
The proposed polarimetric multispectral LiDAR provides different polarimetric multispectral
features (see Fig. 5): the unpolarized reflectance spectrum RunpolðλÞ, the polarized reflectance
spectrum RpolðλÞ, and the DoLP spectrum DoLPðλÞ.

As shown in Figs. 5(a) and 5(b), RunpolðλÞ of all specimens exhibits very low standard
deviation. Specimens of the same material but different surface roughness have similar
RunpolðλÞ, whereas specimens of different materials have significantly distinguishable RunpolðλÞ.
This suggests that RunpolðλÞ is largely independent of the surface roughness and depends mostly
on the material itself. As discussed in Sec. 1, this can be explained by the volume scattering
process affecting the light which penetrates into the material; this scattering causes depolarization
and dominates RunpolðλÞ. The previously mentioned absorption-induced lower reflectance is very
clearly indicated by Runpol for PE and PVC between 580 and 620 nm in the spectral configuration
with 10 nm BWand for PVC at 600 nm in the spectral configuration with 40 nm BW. In addition,
all three plastic specimens (PP, PE, and PVC) also show a decrease in unpolarized reflectance
from 800 to 900 nm for both spectral configurations. The very small standard deviation of
RunpolðλÞ shows that both spectral configurations provide good measurement precision for unpo-
larized reflectance over the investigated spectral range. The spectral configuration with 40 nm
BW, however, exhibits fewer discriminative features than the spectral configuration with 10 nm
BW in material distinction due to its lower spectral resolution (see, e.g., the spectral region
around 600 nm).

Fig. 4 Reflectance spectra RðλÞ of material specimens in (a) the spectral configuration with 40 nm
BW and (b) the spectral configuration with 10 nm BW, where λ represents the central wavelength of
each spectral channel. The lines represent the average values, and the shaded areas denote the
standard deviations—note that the shaded areas are not visible for cases with comparatively small
standard deviations. Different colors and markers represent different materials. Solid lines in lower
color saturation and dotted lines in higher color saturation depict the two roughness levels,
respectively.
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As opposed to RunpolðλÞ, RpolðλÞ exhibits significantly lower spectral dependency for both
spectral configurations [see Figs. 5(c) and 5(d)]. This is due to Rpol being dominated by single
and multiple reflections between surface microfacets. This mechanism is less affected by
material-dependent absorption, and RpolðλÞ thus shows less material-dependent signatures.
Two reasons can explain the remaining apparent material dependence of RpolðλÞ: (1) according
to the Fresnel equations,59 the amount of reflection as opposed to transmission at the interface
between two media depends on their refractive indices. (2) The treatment of the surfaces used
herein may not actually result in the same roughness for different materials (see discussion in
Sec. 3). However, for each material, RpolðλÞ exhibits higher values for the smoother surfaces than
for the rougher ones. Since smoother surfaces lead to narrower and stronger specular reflection
lobes, the approximately normal incidence configuration of the setup (Fig. 1) causes the fixed
aperture of the parabolic mirror to collect more polarization-preserved specularly reflected light,
resulting in higher RpolðλÞ. For smoother stone specimens, the impact from the heterogeneous
distribution of flat mineral grain surfaces is also visible in RpolðλÞ through the much larger stan-
dard deviations. In summary, the results indicate that a smoother surface is associated with higher
values of RpolðλÞ than a rougher one. For the 10 specimens used herein, smooth and rough

Fig. 5 Polarimetric spectra of material specimens, where λ represents the central wavelength of
each spectral channel. Unpolarized reflectance spectra RunpolðλÞ in (a) the spectral configuration
with 40 nm BW and (b) the spectral configuration with 10 nm BW. Polarized reflectance spectra
RpolðλÞ in (c) the spectral configuration with 40 nm BW and (d) the spectral configuration with 10 nm
BW. DoLP spectra DoLPðλÞ in (e) the spectral configuration with 40 nm BW and (f) the spectral
configuration with 10 nm BW. The lines represent the average values, and the shaded areas
denote the standard deviations—note that the shaded areas are not visible for cases with com-
paratively small standard deviations. Different colors and markers represent different materials.
Solid lines in lower color saturation and dotted lines in higher color saturation depict the two rough-
ness levels, respectively.
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samples have RpolðλÞ values differing by about 0.15 on average over the whole spectral range. As
a result, surface roughness is one of the main drivers for distinguishable RpolðλÞ, at least for
AOI ≈ 0, making it a suitable proxy for roughness estimation. The dependence on AOI will have
to be investigated in the future.

DoLPðλÞ, shown in Figs. 5(e) and 5(f), is a popular signature for distinguishing differences
in specular reflection. The DoLP given by Eq. (3) describes the ratio of polarized intensity to total
optical intensity. A highly-absorbing material can only reflect light from the surface as nearly all
penetrated light is absorbed within the material, thus always leading to high DoLP with less
dependency on the surface roughness. This can be demonstrated by the higher DoLP in the
absorption region in the spectral configuration with 10 nm BW between 580 and 600 nm for
the red PE and PVC with different surface roughness. Therefore, the DoLPðλÞ of rougher PE and
PVC overlaps with that of all the other smoother specimens between 580 and 600 nm, suggesting
that the DoLPðλÞmay be a slightly worse indicator for distinguishing different surface roughness
than RpolðλÞ.

4.3 Classification
As described in Sec. 3, we obtain 20 measurement samples from each material specimen. For the
spectral configuration with 40 nm BW, each sample consists of a 28-dimensional feature vector
composed of the 4 spectra RðλÞ, RpolðλÞ, RunpolðλÞ, and DoLPðλÞ across seven spectral channels,
whereas for the spectral configuration with 10 nm BWeach sample consists of a 132-dimensional
feature vector composed by the 4 spectra over 33 spectral channels. The entire dataset is well-
balanced for both material and roughness classification. Each of the 5 material classes is rep-
resented by 40 samples, and each of the 2 surface roughness classes is represented by 100 sam-
ples. Although this dataset is small compared to the feature dimensionality, it enables a first
indicative assessment of the benefit of the multispectral features for material and roughness clas-
sification. Herein, we will only analyze separate classification of material and of roughness and
use only features of one type at a time. The feature vectors used for training and applying the
SVM are therefore 7- and 33-dimensional subsets of the complete feature vectors for both spec-
tral configurations, respectively.

To ensure that the training and testing data are as independent as possible and to obtain
unbiased classification accuracy, we used twofold cross-validation for material classification and
fivefold cross-validation for roughness classification. In each iteration of the twofold cross-val-
idation for material classification, 100 samples obtained from 5 material classes and 1 roughness
level were used as training data, and the other 100 measurement samples obtained from the same 5
material classes but from the other roughness levels were used for testing. For each iteration of the
fivefold cross-validation of roughness classification, we used the 160 measurement samples from
4 material classes in both roughness levels for training and all 40 measurements of the remaining 2
specimens (i.e., same material but different roughness) for testing. We chose the same constant
value of 0.1 for the regularization parameter of the linear SVM for all the classifications to sim-
plify the comparison of the classification performance between different feature types.

The average and standard deviation of the material classification accuracies in the twofold
cross-validation using the different features discussed above are listed in Table 1 for both spectral
configurations. For material classification, RunpolðλÞ shows the highest average accuracy of 60%
with a standard deviation of 0 in the spectral configuration with 40 nm BW and of 100% with a
standard deviation of 0 in the spectral configuration with 10 nm BW. In fact, already Fig. 5(b)
shows that the five materials can be perfectly distinguished in the spectral configuration with
10 nm BW, irrespective of the roughness class, using RunpolðλÞ. The fewer discriminative features
given by the spectral configuration with 40 nm BW [Fig. 5(a)] lead to a worse material clas-
sification performance than the spectral configuration with 10 nm BW.

Compared to the standard reflectance spectrum RðλÞ, RunpolðλÞ, only accessible by polari-
metric multispectral LiDAR, can apparently improve the accuracy of classifying materials sig-
nificantly. For the materials and datasets used here, the improvement is 25% and 59% for spectral
configurations with lower and higher resolutions, respectively. In fact, the unpolarized reflec-
tance spectra with the higher resolution allowed classifying all materials correctly, in our
experiments.
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Material classification using only RpolðλÞ (in both spectral configurations) or only DoLPðλÞ
(in the spectral configuration with 40 nm BW) seems to perform only as well as randomly guess-
ing the material classes (accuracy of 20% ¼ 1∕5 with balanced samples from 5 classes). In fact,
however, the standard deviation of 0 indicates that the classifier in these cases learns to output
only one class label, irrespective of the spectral features. DoLPðλÞ with the higher resolution
spectrum (the spectral configuration with 10 nm BW) performs slightly better but still much
worse than RunpolðλÞ. We conclude that RpolðλÞ and DoLPðλÞ are not sensitive enough to the
materials themselves and thus not generally useful for material classification.

Table 2 summarizes the accuracies of roughness classification based on the fivefold cross-
validation. For this classification task, RpolðλÞ leads to the highest average accuracy of 92% with
relatively small standard deviations of 15% and 11% for both spectral configurations, respec-
tively. DoLPðλÞ performs only slightly worse, which corresponds to the discussion in Sec. 4.2.
RðλÞ seems to contain some information on surface roughness which leads to a classification
accuracy slightly higher than random guessing, but much worse than using RpolðλÞ.
Roughness classification using only RunpolðλÞ does not work. The numbers in Table 2 show that
the accuracy corresponds to that of random guessing and (with 0 standard deviation) the classifier
just predicts constantly one of the two roughness classes for the spectral configuration with
10 nm BW, and it is only marginally better with the spectral configuration with 40 nm BW.

The concrete accuracies obtained herein are not yet generalizable because of the small data-
set, both in terms of materials and roughnesses, as well as in terms of specimens per class.
However, the results clearly indicate an advantage of polarimetric multispectral LiDAR as com-
pared to standard multispectral LiDAR for classifying material and surface roughness. As

Table 1 Material classification accuracy using different multispectral features provided by multi-
spectral and polarimetric multispectral LiDAR in both spectral configurations. The average (mean)
and standard deviation (std) of the classification accuracies are obtained from twofold cross-
validations. The best classification performance among these multispectral features is listed in
bold for each spectral configuration.

LiDAR Features

Spectral configuration
(BW = 40 nm)

Spectral configuration
(BW = 10 nm)

Mean (%) Std (%) Mean (%) Std (%)

Multispectral RðλÞ 48 8 63 1

Polarimetric multispectral RunpolðλÞ 60 0 100 0

RpolðλÞ 20 0 20 0

DoLPðλÞ 20 1 52 7

Table 2 Roughness classification accuracy using different multispectral features provided by mul-
tispectral and polarimetric multispectral LiDAR in two spectral configurations. The average (mean)
and standard deviation (std) of the classification accuracies are obtained from fivefold cross-val-
idations. The best classification performance among these multispectral features is listed in bold
for both spectral configurations.

LiDAR Features

Spectral configuration
(BW = 40 nm)

Spectral configuration
(BW = 10 nm)

Mean (%) Std (%) Mean (%) Std (%)

Multispectral RðλÞ 66 20 60 12

Polarimetric multispectral RunpolðλÞ 57 14 50 0

RpolðλÞ 92 15 92 11

DoLPðλÞ 89 20 89 20
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material classification requires more discriminative features to characterize the wavelength-
dependent interaction between laser beam and surface material, the higher-resolution spectral
configuration leads to better performance in material classification than the spectral configuration
with a lower resolution in our experiments. Future investigations will be needed to find a good
balance between small BW per channel for high spectral resolution and large bandwith per
channel for better signal-to-noise ratio, faster data acquisition, and lower complexity of the
measurement system. Oppositely, roughness classification seems to rely less on wavelength-
dependent features. Both spectral configurations lead to a similar performance of roughness
classification. A more comprehensive study further analyzing not only optimal spectral configu-
rations but also combinations of feature types is needed. This requires a larger set of material
samples and a variety of geometrical configurations, which will be enabled by further automation
of the measurement process and by further development of the polarimetric multispectral LiDAR
prototype toward a smaller form factor and transportability. These investigations are therefore left
for future work.

5 Conclusion and Outlook
We presented an acquisition and analysis method for unpolarized and polarized reflectance spec-
tra of natural surfaces using a novel polarimetric multispectral LiDAR to enhance remote sensing
and classification of material and surface roughness. Data from 10 material specimens in 5
material classes and 2 levels of surface roughness were collected using our polarimetric multi-
spectral LiDAR prototype. We introduced the polarized and unpolarized reflectance spectra and
examined them in detail, comparing them to the standard reflectance spectrum.

The empirical results suggest that material composition and surface roughness are respec-
tively the main drivers for the unpolarized and polarized reflectance spectra, which may therefore
in turn be complementary features for classification and improve classification accuracy over the
one attainable using standard multispectral data. In the present experimental investigation, we
used two spectral configurations with different spectral resolutions but covering the same overall
spectral range, and we applied a linear SVM for classification. In these experiments, the spectral
resolution of 10 nm leads to better material classification than the 40 nm resolution, while there
was practically no difference for roughness classification. The unpolarized reflectance spectrum
with the higher resolution allowed to correctly classify the material among the five classes for all
measurements (100% cross-validation accuracy). Material classification using a standard reflec-
tance spectrum was substantially less accurate, and roughness classification using the standard
spectrum was hardly better than random guessing.

Despite the small dataset available for these first tests, the results allow a proof of concept
and clearly indicate the potential of the polarimetric multispectral LiDAR approach to enable
much better material classification than standard multispectral LiDAR, as well as to open up
the opportunity for deriving additional information on the surfaces from LiDAR data at the level
of the individual measurement points, i.e., with high spatial resolution. In the future, it is impor-
tant to generalize the findings presented herein, e.g., by extending the database of polarimetric
spectral features by collecting data from a larger variety of specimens with different materials,
different surface roughness, and at different distances and incidence angles.
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