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Abstract. Attenuation effects can be significant in photoacoustic tomography since the generated pressure signals
are broadband, and ignoring them may lead to image artifacts and blurring. La Rivière et al. [Opt. Lett. 31(6),
pp. 781–783, (2006)] had previously derived a method for modeling the attenuation effect and correcting for it
in the image reconstruction. This was done by relating the ideal, unattenuated pressure signals to the attenuated
pressure signals via an integral operator. We derive an integral operator relating the attenuated pressure signals to
the absorbed optical energy for a planar measurement geometry. The matrix operator relating the two quantities is a
function of the temporal frequency, attenuation coefficient and the two-dimensional spatial frequency. We perform
singular-value decomposition (SVD) of this integral operator to study the problem further. We find that the smallest
singular values correspond to wavelet-like eigenvectors in which most of the energy is concentrated at times cor-
responding to greater depths in tissue. This allows us to characterize the ill-posedness of recovering the absorbed
optical energy distribution at different depths in an attenuating medium. This integral equation can be inverted
using standard SVD methods, and the initial pressure distribution can be recovered. We conduct simulations
and derive an algorithm for image reconstruction using SVD for a planar measurement geometry. We also
study the noise and resolution properties of this image-reconstruction method. © 2012 Society of Photo-Optical Instrumentation

Engineers (SPIE). [DOI: 10.1117/1.JBO.17.6.061204]
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1 Introduction
The majority of the image-reconstruction algorithms developed
for photoacoustic tomography (PAT) or optoacoustic tomogra-
phy (OAT) have assumed a lossless acoustic medium. The effect
of frequency-dependent attenuation on acoustic waves can be
significant, since the ultrasonic waves generated by pulsed
lasers can be extremely broadband.1 Reconstructed images may
exhibit distortion and artifacts if these effects are not taken
into account. Several researchers have looked at the effect of
acoustic attenuation in OAT. Previous work on dispersive acous-
tic media done by La Rivière et al.2 focused on incorporating
the frequency-dependent attenuation effects into the OAT
model. They related the attenuated pressure in a lossy medium
to the ideal pressure in a lossless medium via an integral
operator. More recently, several groups1,3–5 have used the time-
reversal (TR) approach to address attenuation in PAT. This
method is based on the use of an acoustic forward model in
which the absorption operators are reversed in sign. Roitner
and Burgholzer6 have looked at a complex frequency-approach
regularization method to correct for acoustic attenuation in PAT.

In this work, we will use an approach similar to that by
Markel et al.,7,8 in optical-diffusion tomography, to derive an
inversion formula for the absorbed optical absorption energy
using singular-value decomposition (SVD). This formula is
applicable in a planar detector geometry. It provides insight
into the conditioning of the inverse problem and offers a

promising method for image reconstruction in an attenuating
medium. This expression directly relates the measured attenu-
ated pressure to the absorbed optical energy. We also study
the noise and resolution properties of this SVD-based algorithm.

2 Correction for Ultrasonic Attenuation in
OAT Using SVD

2.1 Methods

In an attenuating medium, the optoacoustic wave equation
includes a loss term2,9,10 and is given by:

∇2pðr; tÞ − ∂2pðr; tÞ
c20∂t2

þ LðtÞ � pðr; tÞ ¼ −
β

Cp

∂
∂t
Hðr; tÞ; (1)

where LðtÞ ¼ 1∕ð2πÞ∫ dωfkðωÞ2 − ðω2∕c20Þge−iωt; and

kðωÞ ¼ ω

cðωÞ þ iαðωÞ; (2)

where ω is the temporal frequency, αðωÞ is the linear attenuation
coefficient, kðωÞ is the complex wave number, pðr; tÞ is the
measured pressure at point r and time t, β is the coefficient
of volume expansion, Cp is the specific heat and c0 is the speed
of sound. Hðr; tÞ is the heating function that denotes the energy
deposited per unit time per unit volume by the illuminating
optical pulse and is given by:

Hðr; tÞ ¼ AðrÞIðtÞ; (3)
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where AðrÞ is the absorbed optical energy and IðtÞ is the
temporal profile of the optical pulse.

For soft biological tissue, the attenuation coefficient has a
power-law dependence on the frequency given by:11

αðωÞ ¼ α0jωjn: (4)

In tissues, typical values for ultrasonic attenuation are: n ≈ 1 and
α0 ≈ 0.1 dBMHz−1 cm−1 (Ref. 11).

Using the Kramers-Kronig relations, for power-law absorp-
tion with 0 < n < 3 and n ≠ 1, one obtains the dependence of
phase velocity cðωÞ on frequency due to frequency-dependent
attenuation as:9

1

cðωÞ ¼
1

c0
þ α0 tanðπn∕2Þðωn−1 − ωn−1

0 Þ; (5)

where c0 is the speed of sound at a reference frequency of ω0.
For n ¼ 1, the dependence of phase velocity cðωÞ on

frequency due to frequency-dependent attenuation is given by:

1

cðωÞ ¼
1

c0
−
2

π
α0 ln

���� ωω0

����: (6)

So for an attenuating medium, Eq. (1) becomes:

▿2p̃ðr;ωÞ þ k2ðωÞp̃ðr;ωÞ ¼ −
iωβ
Cp

AðrÞĨðωÞ; (7)

where p̃ðr;ωÞ is the temporal Fourier transform of measured
pressure and ĨðωÞ is the temporal Fourier transform of the
illumination pulse.

This equation can be solved using standard Green’s function
methods as:12

p̃ðr;ωÞ ¼ −iηωĨðωÞ
ZZZ

d3r 0Aðr 0ÞGðr − r 0Þ; (8)

where η ≡ β∕Cp and Gðr − r 0Þ is the Green’s function.

2.1.1 Angular spectrum expansion of the measured
pressure signals

The angular spectrum expansion of the Green’s function is given
by:13

GðrÞ ¼ expðik2ðωÞrÞ
4πr

¼ 1

8π2

ZZ
1

½α2x þ α2y − k2ðωÞ�1∕2
× exp ½−jzj½α2x þ α2y − k2ðωÞ�1∕2 þ ixαx þ iyαy�dαxdαy: (9)

Substitute this in Eq. (8) and consider the pressure measure-
ments on the plane z ¼ 0 and we get:

p̃ðx; y; 0;ωÞ ¼ −iηωĨðωÞ
8π2

ZZ
d3r 0Aðx 0; y 0; z 0Þ

×
ZZ

dαxdαy
1

½α2x þ α2y − k2ðωÞ�1∕2
× exp½−jz 0j½α2x þ α2y − k2ðωÞ�1∕2
þ iðx − x 0Þαx þ iðy − y 0Þαy�:

(10)

We assume that the photoacoustic object lies in the plane
z 0 ≥ 0. On taking the Fourier transform on both sides and redu-
cing the resulting expression, one obtains the angular spectrum
expansion of measured photoacoustic pressure as:

p̃ðkx; ky;ωÞ ¼
−iηω~IðωÞ

2½k2x þ k2y − k2ðωÞ�1∕2
Z

dz 0 ~Aðkx; ky; z 0Þ

× exp ½−z 0½k2x þ k2y − k2ðωÞ�1∕2�: (11)

2.1.2 SVD of integral operator relating pressure to
optical-absorption coefficient

We followMarkel’s7,8 approach to optical-diffusion tomography
to obtain an integral operator relating the measured attenuated
pressure to the absorbed-optical-energy density.

Define a two-dimensional (2-D) spatial wave vector q as:

q ≡ ðkx; ky; 0Þ: (12)

We then discretize the temporal frequency, ω as ωn. For
notational simplicity, we use z instead of z 0 in the following
equations. One can then write the pressure as:

p̃ðq;ωnÞ ¼
−iηωnĨðωnÞ

2½q2 − k2ðωnÞ�1∕2
Z

dzÃðq; zÞ

× exp ½−z½q2 − k2ðωnÞ�1∕2�;
(13)

where q ≡ ðk2x þ k2yÞ1∕2.
Define PnðqÞ ≡ ~pðq;ωnÞ, kn ≡ kðωnÞ. Thus, one can obtain

an integral equation:

PnðqÞ ¼ SnðqÞ
Z

dz ~Aðq; zÞKnðq; zÞ; (14)

where
Knðq; zÞ ≡ exp ½−zðq2 − k2nÞ1∕2�; (15)

SnðqÞ ≡
−iηωn

~IðωnÞ
2ðq2 − k2nÞ1∕2

; (16)

This equation can be inverted as:8

~Aðq; zÞ ¼
X
m;n

K�
mðq; zÞM−1

mnðqÞ
PnðqÞ
SnðqÞ

; (17)

where

MmnðqÞ ≡
Z

dzKmðq; zÞK�
nðq; zÞ; (18)

the operator K� denotes the complex conjugate of matrix K, and
M−1 is the inverse of matrix M.

We can obtain a simpler expression for MmnðqÞ by perform-
ing the integral over z. Equation (18) can be written as:

MmnðqÞ ¼
Z

∞

0

dz exp ½−zfQmðqÞ þ Q�
nðqÞg�; (19)

where Q�
nðqÞ ≡ ðq2 − k2nÞ1∕2.

This can be reduced to:

MmnðqÞ ¼
�

1

QmðqÞ þ Q�
nðqÞ

�
: (20)
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Thus the desired image of the absorbed optical energy is
obtained by:

AðrÞ ¼ 1

ð2πÞ2
Z

d2q expðiq:ρÞ
X
m;n

K�
mðq; zÞM−1

mnðqÞ
PnðqÞ
SnðqÞ

;

(21)

where ρ is the 2-D spatial vector.
The computation of the inverse of the matrix M is the key

step in the procedure to recover the absorbed optical energy.
Its pseudoinverse can be computed by performing the SVD
of the matrix K. Some of the eigenvalues of this matrix may
be zero or very small. One will need to use regularization to
circumvent this problem.

Thus, the procedure for recovering AðrÞ is:

1. Take the Fourier transform of the measured pressure
(at z ¼ 0) with respect to time and the 2-D spatial com-
ponents to obtain ~pðkx; ky;ωÞ.

2. Divide ~pðkx; ky;ωÞ by the scaling factor SnðqÞ.
3. Compute the matrix Knðq; zÞ by discretizing q and

using Eq. (15).

4. Compute the pseudoinverse of matrix MmnðqÞ.
5. Compute ~Aðq; zÞ using Eq. (17).

6. Take the 2-D inverse Fourier transform of ~Aðq; zÞ to
obtain AðrÞ.

2.1.3 Calculation of eigenvalues of M matrix with
nonzero attenuation

To investigate the posedness of the inverse problem we exam-
ined the properties of the matrix K and its singular values for a
medium with nonzero attenuation. We computed this matrix
for a typical tissue with attenuation α0 ¼ 0.1 dBMHz−1 cm−1

and n ¼ 1. A set of 250 discrete temporal frequencies and 64
discrete spatial frequencies was used. Temporal frequencies
ranged from 0 to 5 MHz and spatial frequencies q ranged
from 0 to 123.7 cm−1. This corresponds to the transducer
elements spaced 0.05 cm apart. We performed an SVD of the
matrix K. The eigenvalues of the matrix M were obtained
from the singular values of matrix K.

The variation of eigenvalues ofM for various spatial frequen-
cies “q” is shown in Fig. 1. Figure 2 shows the variation of the
eigenvectors of matrix M with depth for a specific eigenvalue.
From these plots one concludes that:

1. Smaller values of 2-D spatial-frequency wave vector
“q” are recovered much better.

2. The eigenvectors that are nonzero at greater depths
correspond to smaller eigenvalues.

The behavior of eigenvectors and eigenvalues indicates that
shallower objects can be recovered much better than deeper
objects because they correspond to eigenvectors with much
higher eigenvalues. We also observe that eigenvectors that
correspond to smaller eigenvalues also have much higher
frequency components. This implies that resolution will degrade
as you go deeper and that the higher frequencies cannot be
recovered as accurately.

2.2 Image-Reconstruction Details

To investigate the performance of the SVD-based algorithm,
several reconstructions were performed. The sensor data was
simulated using the k-Wave toolbox,14,15 which uses the
k-space method13 to model the propagation of optoacoustic
waves in lossy media. Both a point source placed at different
depths and a three-dimensional (3-D) phantom were used to
define the initial pressure distribution. For the point source, a
grid size of 64 × 64 × 32 voxels was used (32 × 32 × 16 mm)
supporting temporal frequencies up to 1.5 MHz. The temporal
sampling interval was set to 100 ns and the simulations
performed using 256 time steps. For the 3-D phantom, a grid
size of 128 × 128 × 32 voxels was used (64 × 64 × 16 mm)
with the same temporal sampling interval and 512 time steps.
In both cases the sensor data was recorded in the plane
z ¼ 0, corresponding to 64 × 64 sensor positions for the
point-source simulations and 128 × 128 sensor positions for
the 3-D phantom. The attenuation coefficient was set to
α0 ¼ 3.0 dBMHz−n cm−1, a value of n ¼ 1.5 was used for
the power-law frequency dependence, and the speed of sound
was set to 1500 m∕s. For each investigated case, several recon-
structions were performed. First, the SVD-based method was
used by obtaining the inverse of the matrix M using truncated
SVD (as described in Sec. 2.1.2). The magnitude of the eigen-
values ofM for a specific q was used to regularize the pseudoin-
verse of M for that q 0. For comparison, the images were also
reconstructed using TR.1,5 The TR reconstructions were per-
formed both with and without compensation for acoustic
absorption. When absorption compensation was included, the
reconstructions were regularized by filtering the absorption
and dispersion terms within the governing equations using a
Tukey window. This restricts the range of frequencies that are
allowed to grow during the reconstruction. The filter cut-off
frequency (which acts as the regularization parameter for the
TR algorithm) was chosen by examining the spectrum of the
recorded sensor data.5 To separate the effect of limited-view

Variation of eigen values with spatial frequency

0 50 100 150 200 250
Eigen-value #

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e 
M

ag
ni

tu
de

1.9635 1/cm

19.635 1/cm

58.9 1/cm

117.8 1/cm

Fig. 1 Plot of eigenvalues of matrixM for different spatial frequencies q.
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artifacts (which are common to all reconstruction algorithms
for this sensor geometry), an ideal reconstruction was also
generated using TR with the absorption parameters set to
zero in both the forward and inverse problems. (This is
referred to as the ideal-TR-based reconstruction in the following
sections.)

3 Results

3.1 Sensitivity of SVD-Based Reconstruction to
Regularization Parameter

We found that the quality of the reconstructed images using
our SVD-based method was very sensitive to the regularization
parameter used. The resulting magnitude and sharpness of the
reconstructed images varied with this parameter. We chose the
regularization parameter to depend on q and related it to a cer-
tain percentage of total eigenvalue energy at that q. Specifically,

the truncation parameter ϵ for a given matrixM for a given qwas
chosen to be:

ϵ ¼ totalðeigenvalueðqÞenergyÞ × f ; (22)

where 0 < f ≤ 1. The eigenvalue energy, for a given q, for n
eigenvalues was defined as:

eigenvalue energy ¼
Xn
i¼1

eigenvalueðiÞ2: (23)

Figure 3 shows how the reconstructed SVD-based images for a
point source, at two different depths, vary with f . The regular-
ization parameter that gives the best image also depends on the
value of attenuation α0 and how much noise is present in the
data, and it has to be adjusted when noise level or attenuation
changes.

In general, there is no clear rule to help us decide what is a
good value for the regularization parameter. It depends on how
one evaluates image quality and what is the detection task.
Image quality assessment depends both on the task and the
observer,16 and a given technique may not perform well for
all possible applications. One has to consider various image-
quality aspects like spatial resolution, contrast, signal-to-noise
ratio (SNR), artifacts, suppression of noise, signal detectability,
quantitative accuracy, etc. We found that even in the absence of
random noise in the data, we still had to use regularization as
defined above to obtain a good-quality image that matches well
with the true phantom. The need for regularization in this case
may be arising from the very nature of the matrix K, since it is
exponentially damped. It could also arise from the effect of
rounding and discretization errors. Further investigation is
needed to understand and address this issue.

3.2 Noiseless Data

In the following results, a value of f ¼ 0.99996 was used for the
SVD-based images. All the images were reconstructed using
attenuated-pressure data generated using the k-Wave toolbox.
The cropped reconstructed images using SVD-based reconstruc-
tion and the TR algorithm are shown below in Fig. 4. The recon-
structed images using SVD bear a close resemblance to the
ideal image.

Figure 5 shows the line used for the y-profile shown in Fig. 6,
in the slices z ¼ 0.25 and z ¼ 1.0 cm of the reconstructed AðrÞ
for noiseless data.

3.3 Noisy Data

Random Gaussian noise was added to the attenuated-pressure
data, generated using the k-Wave toolbox, to obtain a SNR
of 45 dB. A value of f ¼ 0.99996 was used for regularization
in the SVD-based method for the slice at 0.25-cm depth. Avalue
of f ¼ 0.9999 was used for regularization in the SVD-based
method for the slice at 1.0 cm depth so as to reduce noise ampli-
fication. Figure 7 shows the cropped reconstructed phantom
images using noisy attenuated pressure.

Figure 8 shows the y-profile along the line shown in Fig. 5,
in the slices z ¼ 0.25 and z ¼ 1.0 cm of the reconstructed
absorbed optical energy for noisy data.

The reconstructed images based on the noisy simulated
pressures obtained via the SVD-based method are in good
agreement with the ideal image. The SVD-based image-
reconstruction algorithm offers comparable images even with
noisy data, although it is more sensitive to the presence of noise.
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3.4 Depth Resolution

Figure 9 shows the profile through a point source placed at
various depths reconstructed using SVD-based attenuated pres-
sure. The plot labeled “True” refers to the original point source.
The label “TR-based” refers to corrected TR-based recon-
structed image, while the label “Uncorrected TR-based” refers
to uncorrected TR-based reconstructed image.

Table 1 lists the full width at half maxima (FWHM) for the
point-source images constructed using the different algorithms.

The SVD-based image reconstruction algorithm shows very
good depth resolution, especially for depths up to 0.35 cm.
At greater depths this algorithm offers worse resolution when
compared to images reconstructed using the TR-based method
with or without attenuation correction. However, the intensity of

the image reconstructed using the SVD-method at greater depths
relative to shallower depths is much higher than that obtained
from the TR-based method with attenuation correction. As men-
tioned before, the depth resolution of the images reconstructed
via the SVD-based method are also dependent on the choice of
the regularization parameter. In practice, we may be able to
attain better depth resolution using the SVD-based method
by adjusting this parameter.

4 Discussion
Our SVD-based method provides insight into the ill-condition-
ing of the inverse problem of image reconstruction in PAT in a
lossy medium. However, there are several important issues to
consider in using this approach. One needs to address the choice
of regularization method used to obtain the matrix inverse of
matrix M. We found that there was a need for regularization
even in the absence of noise. We used a truncated SVD method
for regularization. The truncation of eigenvalues was based on a
certain percentage of total energy contained in all the eigenva-
lues. Our choice of this type of truncation was based on obtain-
ing good resolution at greater depths. However, there are many
other methods for regularizing, and there are several excellent
references in the literature17 that address this issue extensively.
A systematic study of the choice of regularization parameter for
our SVD-based image-reconstruction method remains a subject
for further study.

Both the TR-based and the SVD-based image-reconstruction
techniques use regularization to prevent high-frequency noise
present in the sensor data being amplified during the reconstruc-
tion. However, there is a distinct difference between these tech-
niques in how this regularization is applied. In the TR-based
approach, the range of frequencies that is allowed to grow is
restricted by filtering the absorption parameters within the gov-
erning equations. This restriction applies to signals originating
from all depths within the medium. However, in practice, some
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Fig. 3 Variation of SVD-based images with the regularization parameter as a percentage of total energy of the eigenvalues.

Fig. 4 Reconstructed z-slice at a depth of 0.25 cm of a 3-D phantom,
left to right: true phantom, SVD-based image, ideal-TR-based image,
corrected-TR-based image, uncorrected-TR-based image.

Fig. 5 True phantom showing the line used for y-profile.
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of the high frequency components from shallow features within
the image may be above the noise floor, while the same fre-
quency components from deeper features may not. This method
of regularization does not allow for the selective compensation
of the attenuation at these frequencies. Conversely, in the SVD-
based approach, the regularization is based on the magnitude of
the eigenvalues where the corresponding eigenvectors have
features at different depths. This allows for the compensation
of the attenuation of high-frequency components originating
from shallow features, even if the corresponding frequency
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Fig. 6 Line profile through phantom at depths of 0.25 and 1.0 cm for noiseless attenuated pressure data.

Fig. 7 Reconstructed z-plane at a depth of 0.25 cm reconstructed using
noisy attenuated pressure, left to right: true phantom, SVD-based
image, ideal-TR-based image, corrected-TR-based image, uncorrected
TR-based image.
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Fig. 8 Line profile through phantom at depths of 0.25 and 1.0 cm for noisy attenuated-pressure data.
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components from deeper features are not above the noise floor.
Finally, it is useful to note that, while the SVD-based method is
computationally intensive, this may be justified in cases where
the quantitative accuracy of the reconstructed pressure distri-
bution is of importance. For example, in quantitative photo-
acoustics where the goal is to derive accurate chromophore
concentrations,18 errors in the reconstructed pressure due to
acoustic attenuation will ultimately result in errors in the
extracted quantitative information.

5 Conclusions
We derived an operator relating the attenuated pressure to the
absorbed optical energy to reconstruct images in PAT in an
attenuating medium for a planar geometry. We derived an
SVD-based algorithm based on this operator to reconstruct
the absorbed optical energy in PAT in an attenuating medium.
We looked at the eigenvalues of the matrix M which is used to
recover the absorbed optical energy. We found that smaller
values of the 2-D spatial frequency vector q are recovered
much better than the larger values. We also observed that the
smaller eigenvalues typically corresponded to eigenvectors
with most of their energy at greater depths. The behavior of
eigenvectors and eigenvalues indicated that shallower objects

can be recovered much better than deeper objects because
they correspond to eigenvectors with much higher eigenvalues.
The SVD-based approach to the attenuation problem in PAT
offers a promising method for direct image reconstruction in
a planar geometry. It also provides a way to study the condition-
ing of this inverse problem. This SVD-based algorithm shows
good depth resolution and noise stability. However, we found
that the image quality of the reconstructed images was very
sensitive to the choice of regularization parameter used for
obtaining the inverse of M via SVD.
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