Journal of

B1omed1cal Optlcs

SPIEDigitalLibrary.org/jbo

Extracting cardiac shapes and motion of
the chick embryo heart outflow tract
from four-dimensional optical coherence
tomography images

Xin Yin

Aiping Liu

Kent L. Thornburg
Ruikang K. Wang
Sandra Rugonyi



Journal of Biomedical Optics 17(9), 096005 (September 2012)

Extracting cardiac shapes and motion of the chick embryo
heart outflow tract from four-dimensional optical
coherence tomography images

Xin Yin,? Aiping Liu,> Kent L. Thornburg, Ruikang K. Wang,? and Sandra Rugonyi®
?Oregon Health & Science University, Department of Biomedical Engineering, Portland, Oregon 97239
bUniversity of Wisconsin, Department of Biomedical Engineering, Madison, Wisconsin 53706

“Oregon Health & Science University, Heart Research Center, Portland, Oregon 97239

dUniversity of Washington, Department of Bioengineering, Seattle, Washington 98195

Abstract. Recent advances in optical coherence tomography (OCT), and the development of image reconstruction
algorithms, enabled four-dimensional (4-D) (three-dimensional imaging over time) imaging of the embryonic heart.
To further analyze and quantify the dynamics of cardiac beating, segmentation procedures that can extract the
shape of the heart and its motion are needed. Most previous studies analyzed cardiac image sequences using manu-
ally extracted shapes and measurements. However, this is time consuming and subject to inter-operator variability.
Automated or semi-automated analyses of 4-D cardiac OCT images, although very desirable, are also extremely
challenging. This work proposes a robust algorithm to semi automatically detect and track cardiac tissue layers from
4-D OCT images of early (tubular) embryonic hearts. Our algorithm uses a two-dimensional (2-D) deformable dou-
ble-line model (DLM) to detect target cardiac tissues. The detection algorithm uses a maximum-likelihood estimator
and was successfully applied to 4-D in vivo OCT images of the heart outflow tract of day three chicken embryos.
The extracted shapes captured the dynamics of the chick embryonic heart outflow tract wall, enabling further ana-
[ySiS of cardiac motion. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.9.096005]
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1 Introduction

This work is motivated by the need to analyze the motion of the
embryonic heart and to elucidate relationships between altered
cardiac mechanics during early development and congenital
heart defects. Blood flow is essential for cardiac development,
and alterations in blood flow dynamics can lead to heart
defects,! which affect about 1% of newborn babies. The inter-
action between cardiac tissue and blood flow dynamics deter-
mines the mechanical stimuli (e.g., stresses/strains) to which
cardiac cells are subjected, stimuli that modulate cardiac growth
and development. Images of the beating heart can then be used
not only to visualize cardiac motion but also to quantify
mechanical stimuli that modulate intrinsic cardiac genetic
programs.

Optical coherence tomography (OCT) has been extensively
used to study embryonic and cardiac development.>* Recently,
the development of spectral domain OCT (SDOCT)* made it
possible to acquire in vivo image sequences of the developing
heart™ and to obtain four-dimensional (4-D) [three-dimensional
(3-D) images over time] OCT images of the beating embryo
heart”® and blood flow velocities.”!® Although OCT allows
micro-structural and Doppler velocity visualization, quantifica-
tion and analyses of cardiac motion and blood flow have been
hampered by a lack of reliable, automatic procedures to extract
the shape and motion of the developing heart from OCT images.
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To analyze cardiac motion from in vivo OCT images, most
previous studies used manual segmentation and manually
extracted measurements.'*!" However, thorough manual analy-
sis of OCT cardiac image sequences, which comprise large
volumes of data, can be very time consuming and subject to
operator errors. Therefore, to facilitate quantification and com-
parison of image datasets there is a dire need to develop auto-
mated analysis of cardiac motion from OCT images. Here, we
present a semi-automatic, robust procedure to extract the
dynamic shapes of the beating embryonic heart from 4-D
OCT images.

We applied our segmentation procedure to 4-D images of a
cardiac segment, the heart outflow tract (OFT), of chick
embryos at the Hamburger-Hamilton'> developmental stage
18 (HH18), approximately 3 days of incubation. At HH18S,
the heart OFT has a tubular structure, with an external myocar-
dial layer, an endocardial layer that is in contact with blood, and
a cardiac jelly layer in between the myocardium and endocar-
dium (Fig. 1). From OCT images, the myocardium, cardiac jelly
and the blood can be readily distinguished. The endocardium
that lines the lumen, however, cannot be distinguished from
blood. This is, however, not an important limitation as the endo-
cardium is a thin monolayer of endocardial cells and thus can be
assumed to coincide with the lumen-tissue interface. During the
cardiac cycle, the OFT myocardium contracts and expands
approximately preserving a tubular shape. In contrast, upon con-
traction, the shape of the endocardium becomes irregular as it
“folds” along lines that are approximately aligned with the
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Fig. 1 Structure of the heart outflow tract (OFT). (a) 3-D image set
acquired with OCT, showing a longitudinal OFT section. (b) Sketch
of the OFT showing its wall layers, as well as proximal and distal con-
nections. The arrow shows the direction of blood flow. (c) and (d) Cross-
sectional images at the inlet of the OFT during maximal contraction and
maximal expansion. (e) and (f) Cross-sectional images at the outlet of the
OFT during maximal contraction and maximal expansion. M: myocar-
dium; C: cardiac jelly; L: lumen. Scale bars: 100 pm.

direction of flow."" Our developed procedure successfully

detects and segments the OFT myocardium and endocardium
over the cardiac cycle.

Automatic extraction of myocardium and endocardium
shapes from 4-D OCT images presents several difficulties,
including:

(1) the presence of tissues that are adjacent to the myo-
cardial layer;

(2) image noise and variations in intensity due to weak-
ening of OCT signals with tissue depth [see Fig. 1(e)
and 1(H)];

(3) the irregular, folding motion of the endocardium,
with a shape that deviates from tubular upon OFT
contraction; and

(4) large displacements of OFT tissue layers over time.

To overcome these difficulties, a segmentation procedure must

distinguish target tissue from adjacent tissue, even as intensity
lowers with tissue depth and must successfully track the large
and irregular displacements of target tissues.

Algorithms have been developed to automatically extract the
shape of tubular structures from vascular images.'>" In parti-
cular, deformable models,’®?' such as active-contour (snake),
have been widely used to detect the boundary of target tissues
and extract their shapes.>”>> These models, however, typically
fail to correctly detect target tissues when adjacent tissues with
similar intensity are present. To correctly segment target tissue
layers, piece-wise deformable models (a type of template-
matching model) adjust their shape to match the shape of the
tissue layer by using intensity values from inside and outside
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of the model.?®>® Here, we designed a robust two-dimensional
(2-D) piece-wise deformable model, the double-line model
(DLM), to locally detect the myocardial layer and the endocar-
dial layer from 2-D cross-sectional images of the developing
heart. A robust likelihood estimator is used to achieve accurate
detection of the target tissue layer even with weakening inten-
sities of OCT signals (lower signal-to-noise ratios) with tissue
depth, and in the presence of adjacent tissues. Tracking of tissue
layers was performed in space and time to achieve 4-D segmen-
tations. The extracted cardiac shapes accurately captured the
geometrical configuration of the OFT tissue layers and their
motion over the cardiac cycle.

2 4-D OCT Imaging of the Chick Embryonic
Heart Outflow Tract

In this section we briefly describe the acquisition of in vivo ima-
ging data using OCT, and image data reconstruction into 4-D
images. Prior to imaging, white leghorn eggs were incubated
to HH18 (~72 h). The eggs were then removed from the incu-
bator and placed in an organic glass cube in which temperature
was controlled to approximately 37.5°C to keep the cardiac
cycle at a physiological range (around 370 ms). The egg
shell and part of the membrane overlaying the embryo were
removed to provide optical access to the chick heart. A spectral
domain OCT system was then used to image the OFT of the
embryonic chick heart.®’ The system acquired 256 X 512
pixel images (256 A-scans) at a rate of 140 frames per second
(fps), with axial and lateral resolutions of ~10 ym and ~16 pm.
Following our previously described 4-D imaging strategy,® we
acquired 2-D image sequences that included about four cardiac
cycles (200 frames at speed of 140 fps) at different image planes
along the OFT, separated by 7.5 um. Our imaging procedure
resulted in 120 frame sequences along the OFT (see Fig. 2).
We also imaged longitudinal frame sequences (for reconstruc-
tion purposes). Raw image acquisition took about 20 minutes.

To obtain 4-D images of the OFT, the acquired OCT image
frames were combined using our developed reconstruction
procedure.® Since image acquisition was not gated, we used
similarity of lines from neighboring images to synchronize
frame sequences acquired at different image planes along the
OFT, and then we calibrated the synchronization using time-
point lags estimated from longitudinal image frames. To gener-
ate the 4-D image dataset, we pooled the acquired image frames
to one cardiac cycle interpolating the images to obtain several
3-D reconstructions over the cardiac cycle (see Fig. 2). Each
reconstructed 4-D image dataset consisted of 3-D image datasets
at 196 different time points (over one cardiac cycle), with each
3-D image dataset consisting of 180 X 265 X 110 voxels. We
applied our shape extraction algorithm to these reconstructed
4-D OFT image datasets.

3 Developed 4-D Shape Extraction Procedure

We designed an algorithm to extract the dynamic shapes of the
heart myocardium and endocardium from reconstructed 4-D
OCT images. We extracted three surfaces over time: the external
and internal surfaces of the myocardium layer and the endocar-
dium (or tissue-lumen interface) surface. Here, we first present a
brief overview of the extraction procedure. Then, we explain in
more detail the DLM model and the segmentation strategy
employed.
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Fig. 2 Schematic representation of OCT imaging strategy and reconstruction procedure. Cross-sectional OCT images were obtained by scanning the
heart at 120 positions (separated by 7.5 um) along the OFT. At each position, 200 sequential 2-D scans were obtained at 140 fps (about four cardiac
cycles). A transverse position was also imaged (not shown). Acquired image sequences, however, start at different phases (timings) over the cardiac
cycle. To synchronize the images, cross-sectional sequences are first pooled to one cardiac cycle, phases between image sequences are calculated,
and then image sequences are interpolated so that sequences from all positions start at the same time and have the same number of image frames (196
frames over the cardiac cycle). 3-D images that show the position of the OFT over the cardiac cycle are then constructed to obtain 196 sets of 3-D
images, with each 3-D image consisting of 110 positions along the OFT. t in the right image is time, and T is the period of the cardiac cycle (370 ms).
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Fig. 3 Sketch showing the OFT shape extraction procedure from OCT
images. (a) Cross-sectional plane depicting the myocardium and endo-
cardium layers, the myocardium mid-layer contour, a layer DLM placed
on the myocardium and an edge DLM placed on the endocardium.
(b) Initial cross-sectional plane. (c) Extraction of the cardiac shape is
performed by sweeping cross-sectional planes along the OFT.

3.1 Overview of the 4-D Extraction Algorithm

To extract the shape of the cardiac tissue layers, we used 2-D
cross-sectional planes swept along the centerline of the heart
OFT (see Fig. 3 and Sec. 3.4 for a detailed description of
how the centerline and cross-sectional planes are obtained),
and a robust 2-D segmentation algorithm. The advantages of
using 2-D cross-sectional planes are:

(1) for tubular structures tissue layer surfaces form a
closed contour on the plane and

(2) image processing is simpler on 2-D frames (than 3-D
or 4-D volume data).

The 2-D segmentation algorithm was successively applied to 2-
D cross-sectional planes over space and time to render 4-D seg-
mentations. We used this strategy, together with smoothing and
regularization procedures, to extract the shapes of the myocar-
dium and endocardium over the cardiac cycle.

The 2-D segmentation algorithm was based on a local, piece-
wise deformable double-line model [DLM; see Fig. 3(a)]. Two
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slightly different DLM formulations were developed: the layer
DLM, and the edge DLM. To detect the myocardium layer
(internal and external surfaces) we used the layer DLM, and
to capture the endocardium layer (essentially a thin interface
between the tissue and the lumen), we used the edge DLM
[see Fig. 3(a)]. In our algorithm implementation, to detect car-
diac tissues, several layer DLMs are placed around the myocar-
dium and several edge DLMs are placed around the
endocardium. The DLMs on each tissue layer are then linked
together using active-contour techniques, and detection of the
myocardial and endocardial layers is guided by a robust max-
imum-likelihood estimator. Linking the DLMs with active-
contour facilitates detection and tracking of tissue motion.

Our extraction procedure segments the myocardium layer
and then the endocardium layer (see Fig. 4). Extraction of
3-D surface shapes from the first 3-D image volume dataset
(time ¢ = 0) starts with a manual setting of the myocardium
mid-layer contour [a contour that divides the thickness of the
myocardium layer in half, see Fig. 3(a)] on an initial plane.
Layer DLMs are arranged around the mid-layer contour, and
linked with an active-contour model. Then, guided by a
maximum-likelihood estimator, the layer DLM thickness and
position are adjusted to match the myocardium layer
[see Fig. 3(b)]. The procedure is repeated for each cross-
sectional plane until the entire 3-D volume data is spanned
[see Fig. 3(c)]. To segment the myocardium at the next time-
step t = At, the configuration of the layer DLMs at ¢t = 0 is cop-
ied to the 3-D volume data corresponding to t = At¢, and the
myocardium layer is detected in the new time step. The proce-
dure is repeated for all time steps, until the entire cardiac cycle is
spanned. Smoothing in space and time is then performed to yield
the myocardial shape.

Once the myocardium has been segmented, we used the seg-
mentation to mask the regions of the cross-sectional images that
lie outside the inner myocardial surface (see Fig. 4). This is done
to facilitate detection of the endocardium. To reduce image
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Fig. 4 Steps to extract the 4-D OFT myocardial and endocardial layer surfaces.

noise, we then generate a binary image that increases lumen con-
trast. Edge DLMs are then placed around the lumen-tissue inter-
face, and linked with an active-contour. The position of the edge
DLMs is then adjusted to match the endocardium layer on the
preprocessed image. This is repeated in space and time until the
endocardium from the whole 4-D dataset is segmented. Smooth-
ing of the lumen/endocardium surface is then performed in
space and time.

3.2 2-D Detection of the Myocardial Layer

The layer DLM is a local 2-D template deformable model that
we designed to track the myocardium layer, and is key to our
myocardial shape extraction procedure. In this section, we will
introduce the layer DLM, its main parameters, and the
maximum-likelihood estimator used to match the DLM to the
myocardial layer. We will also describe how DLMs are linked
together with an active-contour model to smooth the contour and
guide myocardium detection.

3.2.1 Layer DLM basic parameters

The DLM consists of two parallel lines: AB and CD [Fig. 5(a)],
which are the outer and inner DLM edges, respectively. Basic
parameters of the DLM describe its size and location: width w,,,;
length [,,; position p,, (DLM center point position vector); and
direction t,, (a unit vector parallel to the DLM edges). These
parameters also define a binormal vector n,,, a unit vector per-
pendicular to t,, and pointing from the DLM center to the DLM
outer edge. M = {w,,, l,,, Pm-t,} represents the state of the
DLM. To detect the OFT myocardium, layer DLMs are scaled
by changing w,, and /,,; rotated by adjusting t,,; and shifted by
changing p,,.
The layer DLM was designed to

(1) detect and track target, high-intensity tissue
layers and

(2) accurately capture the thickness of the tissue layers
(avoiding adjacent tissues).

Local DLM intensity values are used to determine adaptive
intensity levels, which, within a maximum-likelihood estimator,
guide adjustment of DLM parameters to match the myocardial
layer locally.
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3.2.2 Foreground and background intensity estimation

To distinguish the target tissue from adjacent tissues, foreground
and background intensity levels are estimated. The foreground
intensity (/5) is defined as the intensity of the target tissue; the
background intensity (/) is defined as the intensity around the
target tissue. In OCT images, the intensity at the center of the
myocardial tissue layer is higher than the intensity near the tis-
sue boundaries; also the intensity around the outer edge of the
DLM may be different from the intensity around its inner edge.
Thus, we define two levels of foreground intensity: high (1),
and low (I5); and two levels of background intensity: outer
(I3,), and inner (I;). To estimate I, and I, we use pixel inten-
sities from regions inside and outside of the layer DLM, respec-
tively [see Fig. 5(b)]. We divide the internal DLM region, R,,,;,
into two subregions, R,,;, and R,,;, corresponding to the middle
portion of the DLM, and the portions adjacent to the edges,
respectively [see Fig. 5(b)]. Thus R, is a disjoint region. Simi-
larly, we define two external regions, R;,, and R,;, which are
adjacent to the DLM outer and inner edges, respectively. The
equations used to calculate foreground and background intensi-
ties are listed in Table 1. Foreground and background intensities
are adaptive and depend on the local intensities of the region
where the DLM is located. This allows successful detection
of cardiac layers even when image intensity varies.

B A Rpo B| | Wm2
Rm! Win/4
Win Rmi{ Rmh Win/2
Rl Win/4
D C Ry B w2
(a) (b)

Fig. 5 The layer double-line model (layer DLM). The layer DLM con-
sists of two parallel lines AB (outer edge) and CD (inner edge), which
can be adjusted to detect a tissue layer. (a) DLM parameters that define
the DLM state : width, w,,; length, /,,; position, p,,; and direction, t,,.
(b) Regions of the layer DLM: the DLM is divided into an internal region,
R, which is in turn subdivided into two subregions, R, and R,,; and
two external regions, R, and Rj;. These regions are used to calculate
foreground and background intensity levels from OCT images.
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Table 1 Equations used to calculate foreground and background
intensity levels.

Intensity level Formula
I Med[I(x)], x € Rpi
Ity Med[I(x)], I(x) > I and X € Ry
Iy Med[I(x)], I(x) < I and X € Ry
Ibo Med[I(x)], x € Ry,
i Med(I(x)], x € Ry

I(x): intensity of the pixel at position x.
Med(): median value.

3.2.3 Maximum-likelihood estimator

It has been shown that maximizing a likelihood estimator that
uses intensity information from inside and outside of a deform-
able model can be successfully used to differentiate target
tissues from adjacent tissues.!”**?° Inspired by these studies,
we define the normalized likelihood function L, in discrete
form by:

L,M|I) = -~ Z 1(x) Iho|+|1)( x) = L
Ih | xeR,, Roni
n Z Ifh|+ Z —|1(x) — 17| )
2 AR

where I(x) is the intensity of a pixel located at position X in the
cross-sectional image, and M is the state of the layer DLM. To
reduce mis-detection of target tissue layers, the likelihood func-
tion was normalized with I, and the DLM area, A(R), defined
as the number of pixels in the DLM region considered.

To detect the target tissue, we find the DLM state
M = {w,, L, Pm-t,} that maximizes L, (M|I). Because the
likelihood function uses local intensity information from inside
and outside of the DLM, the detection algorithm is robust and
can locally find the target tissue even when the local image is
noisy and intensity is low.

3.2.4 Llinking layer DLMs with the active-contour model

The layer DLMs are used to detect the myocardium locally. To
mitigate local uncertainties, and facilitate smoothing, the DLMs
placed around the myocardium layer (see Fig. 6) are linked with
an active-contour (snake) model. The snake model is a classical

Layer DLM

Inner-layer contour
Mid-layer contour

Outer-layer contour

Myocardium layer

Fig. 6 Localization of DLMs around the myocardial layer and lumen
interface.
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method to detect the contour of an object in an image by means
of energy minimization.”” The energy function, Egye, of the
active-contour model that we used here is,

Fuse = [ [a|vx<s>|2 B +rE|ds. @
0

where v(s) is the parametric curve of the myocardium mid-layer
contour, with s € [0, 1]; v,(s) and v, (s) are the first-order and
second-order derivatives of v(s); E denotes an external energy
term, which in our implementation was equal to the negative of
the intensity of the local pixel (maximum in the center of the
myocardium layer, where the mid-layer contour of the DLM
is placed); a, f and y are constant weights.

3.2.5 Implementation and constraints

The layer DLM can be used to locally find the target tissue, by
changing its size, position and direction to approach the tissue
layer and, finally, match the tissue layer [see Fig. 7(a)-7(c)].
However, sometimes detection fails, especially in situations
when there is: 1. close proximity of target and adjacent tissue
layers [e.g., Fig. 7(1)]; 2. incorrect initial orientation of the
layer DLM [e.g., Fig. 7(h)]; and 3. overlap of layer DLMs
placed around the myocardium layer. To avoid these issues
and increase the robustness of the extraction procedure, we con-
strained the layer DLM state parameters. Constraint values were
found empirically from images, but we could use them in several
image datasets without change.

To prevent simultaneous detection of both the target and
adjacent tissue layers, we set bounds on the value of the
DLM width w,,. The maximum w,, was constrained to be larger

DLM Target tissue

Successful cases Failed cases

Fig. 7 Detection of the myocardial layer (target tissue) from OCT images
of the embryonic heart OFT using the layer DLM. (a—c) Detection pro-
cess. (d-g) Successful segmentation results: the layer DLM can success-
fully detect the myocardial layer even when there are adjacent tissues
(in d and e) and intensity is weak (in f and g). (h) and (i) Examples of
failed detection of the myocardium: adjacent and target tissues detected
together (in i) and the orientation of the DLM is incorrect (in h). Scale
bars: 100 um.
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than the actual thickness of the target tissue layer, but smaller
than about twice the target layer thickness. From analysis of
OCT cross-sectional images, the thickness of the OFT myocar-
dial layer was about 14 pixels (70 um) near the OFT inlet, and
10 pixels (50 pm) near the OFT outlet. Thus, we set the max-
imum w,, to be 16 pixels near the OFT inlet, and 14 pixels near
the OFT outlet. We also set the minimum w,, to be 4 pixels
(20 pm) everywhere. To avoid incorrect orientation of layer
DLMs, the DLM direction, t,,, was aligned to the tangent of
the active-contour curve that links the DLMs around the myo-
cardium (see Fig. 6). Finally, to prevent overlapping of layer
DLMs, DLM shifts were allowed only in the direction of the
DLM binormal n,, (that is perpendicular to the active-contour
curve). Placing 40 layer DLMs around the myocardial layer in a
cross-sectional image (see Fig. 6) was found to be enough to
achieve an accurate segmentation of the myocardium.
Parameters of the active-contour model [see Eq. (2)] that
linked the layer DLMs were also found empirically. Because
the second term in Eq. (2), vy(s), is related to the contour
curve smoothness, # was chosen to be larger than a and y. Set-
ting B about 1.5 times larger than « and y (@ =15, y = 15)
worked well in implementation in several image datasets.

3.3 2-D Detection of the Endocardial Layer

The procedure to extract the endocardium layer from the cross-
sectional images is similar to the procedure used to extract the
myocardium layer. In OCT images, the endocardium layer can-
not be distinguished, but the lumen-wall interface appears as the
“edge” between the low-intensity cardiac jelly and the high-
intensity endocardium and lumen. However, the lumen edge
is frequently blurred in OCT images and to facilitate detection,
we preprocessed the images to increase contrast and reduce
noise. In the preprocessed images, the lumen-wall edge
shows as a region of finite width in which intensity changes con-
tinuously (from dark to bright), therefore suited for detection
using a DLM. Changes to the DLM formulation to detect the
lumen-wall interface (the “edge” DLM) included redefining
the foreground and background intensities and the DLM
constraints and changing the definition of the associated
maximum-likelihood estimator.

3.3.1 Image preprocessing

To generate preprocessed OCT images, we used an adaptive
intensity threshold on the previously identified 2-D cross-
sectional images and created a binary image with intensities
either set to a fix high value, 7, or 0, with lumen areas showing
with high-intensity. Because only the tissues inside the region
delineated by the inner contour of the myocardium layer (the
inner-layer contour, see Fig. 6) are useful for extracting the
lumen-wall interface, the intensity of the pixels that are outside
of the inner-layer contour are set to O (masked out) in the binary
image. To increase image contrast, the intensity of the pixels
within the inner-layer contour is calculated using the median
intensity of a small image region (window) centered at each
pixel. If the intensity of the pixel is smaller than the median
intensity of the region, pixel intensity is set to O; otherwise,
it is set to /,,. To reduce noise, we then calculate the mean inten-
sity of three binary images: the image of interest and the two
images that are adjacent to it in a 3-D image dataset (see
Fig. 8). This operation reduces the sharpness of the lumen
“edge” allowing use of a formulation that employs DLMs.
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We then use this preprocessed image to extract the lumen-
wall interface.

3.3.2 Edge DLM and maximum-likelihood estimator

To detect the lumen-wall interface, we slightly modified the for-
mulation of the DLM, resulting in what we called an edge DLM
formulation. The edge DLM is similar to the layer DLM,
except that:

(1) its width w,, is set to a small, fixed constant;

(2) background intensities are constant (/,, =0,
Iy = 1.);

(3) only one foreground intensity level is used, and its
value is constant (I = I,,) rather than adaptive.

The maximum-likelihood estimator function used for detection
of the lumen-wall interface, L,, is defined as follows:

LMD = s 3 0 =T+ 11%) = I

~ l1x) - 171]- ©)

The edge DLMs on the lumen contour are connected by an
active-contour model. Similar to how layer DLMs are used to
detect the myocardium, in detecting the lumen-wall interface at
each cross-sectional preprocessed image, the likelihood function
L, is locally maximized.

3.3.3 Implementation and constraints

The values of parameters needed to obtain an accurate segmen-
tation of the lumen were determined empirically and tested on
several image datasets. For the binary image, we used 7, = 120.
Further, to make the lumen visible and yet accurate for extrac-
tion, the size of the window used to calculate the binary intensity
of pixels was set to 31 pixels (that is about 165 ym) in the image
vertical and horizontal directions, centered on the pixel of inter-
est. These values resulted in preprocessed images that accurately
showed the lumen domain (see Fig. 8).

To detect the lumen-wall interface, we set w,, to be 4 pixels
(20 pm), and background and foreground intensities to be con-
stant: 1, = 0, I,,; = 120, I; = 120. Due to the irregular shape
of the lumen contour, edge DLMs easily overlap when using an
active-contour model to smooth the contour. Instead, we smooth

Previous
adjacent
section

Current
section

Next
adjacent
section
Original ~ Binary Preprocessed
image image image

Fig. 8 Image preprocessing for extracting the 2-D lumen contour. Scale
bars: 100 pm.
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the contour by averaging the position of adjacent DLMs on the
lumen contour and, like for the layer DLM, use the active-con-
tour to constrain edge DLM orientation and shifts. We found
that placing 80 edge DLMs around the lumen contour in a
cross-sectional plane was sufficient to accurately extract the
lumen-wall interface.

3.4 Extraction of 4-D OFT Shapes

Extracting 4-D OFT shapes is performed as summarized in
Sec. 3.1. We first determine the orientation of cross-sectional
planes along the OFT, and extract the contours of the myocardial
layer from cross-sectional images, using layer DLMs linked by
active-contour models (see Fig. 4). Then, the lumen contours are
extracted using edge DLMs applied to preprocessed cross-
sectional images. It is worth noting here that we have not imple-
mented a global optimization function on our procedure.
Instead, our approach is to find an overall solution by succes-
sively solving local optimization problems:

(1) Maximum-likelihood estimators to find local para-
meters of each DLM (DLM states are independent
of each other at this step), and then

(2) An active-contour algorithm to smooth and further
refine the contour made by linking individual DLMs.

Step 2 changes the position of DLMs, and thus the procedure is
iterated to find accurate solutions. Further, smoothing in space
(outside of the plane) and time is also performed, and the suc-
cessive procedure described above applied again after
smoothing.

In this section, we describe in detail how we determine the
orientation of cross-sectional planes, how the iterative segmen-
tation procedure is applied, and how we smooth the extracted
contours in space and time.

3.4.1 Determination of cross-sectional planes

A cross-sectional plane is defined here as a plane approximately
perpendicular to the 3-D centerline of the OFT myocardium, and
is represented by a position vector, py, and a normal vector, ng
(see Fig. 3). Changing p, shifts the plane, and changing n;
rotates the plane. In our implementation, p, is the centroid of
the myocardium mid-layer contour. Identification of cross-
sectional planes in 4-D starts with a manual setting of the myo-
cardium mid-layer contour on an initial plane on the first 3-D
image volume dataset (r = 0). Layer DLMs are arranged around
the mid-layer contour, linked with an active-contour model, and
used to detect the myocardium layer on the plane. The initial
plane chosen, however, is not necessarily a cross-sectional
plane. To find a cross-sectional plane, the initial plane is rotated.
DLMs are used to match the myocardium layer after each
rotation, until a plane that has the minimum mid-layer contour
perimeter (the cross-sectional plane) is found. The DLM config-
uration is then copied to a new plane that is parallel to the cross-
sectional plane found but slightly shifted in the direction of the
plane normal. DLMs then are used to match the myocardium
layer, and the plane is rotated until a new cross-sectional
plane is found. Plane shifting and rotation are repeated until
the entire OFT from the first 3-D volume data is spanned
[see Fig. 3(c)]. The centroids of the cross-section mid-layer con-
tours are then extracted to form the OFT centerline, which is
smoothed in space. After centerline smoothing, cross-sectional
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planes are adjusted, so that they remain perpendicular to the
centerline and detection of the myocardium layer is performed
on adjusted planes. This procedure results in an initial
segmentation of the myocardium layer at time ¢ = 0.

To segment the myocardium at the next time-step, t = At,
the configuration of the layer DLMs at r = 0 is copied to the
3-D volume data corresponding to t = At, and the segmentation
procedure is used to change the DLM thickness and position to
match the myocardial layer in the new volume dataset. The OFT
centerline is then extracted, smoothed in space, and cross-sec-
tional planes are adjusted. This is followed by detection of the
myocardial layer on the adjusted cross-sectional planes. The
procedure is then repeated for all time steps until the entire car-
diac cycle is spanned. This strategy provides a good initial esti-
mation of the position and orientation of cross-sectional planes
in 4-D.

After the initial estimation of cross-sectional planes
described above, the location and orientation of the planes is
adjusted once more. To avoid spurious oscillations near the
boundaries (the inlet and outlet of the outflow tract), the first
and last cross-sectional planes along the OFT are fixed in
space (p, and n,; do not change over time). For these planes,
p; and n; are the mean of the previously estimated normal
and position vectors over time. Plane positions in between
the first and last planes are adjusted by first smoothing the cen-
terlines in space and time. Smoothing in space and time uses
data from adjacent planes: suppose that S;; denotes a quantity
to smooth on the i’th cross-sectional plane at time j; the new,
smoothed value of §;; is then caculated as the mean of S(;_y);,
S(i+1)j> Si(j-1)> and S;(;4 1y. This procedure is performed for each
component of ng and p,, and for each plane (except the first and
last), and each time-point. Cross-sectional planes are then
arranged so that distance within planes is as uniform as possible,
while avoiding cross-sectional planes from crossing each other
(such that a nonoverlapping mesh can be constructed directly
from extracted results). In regions where the OFT centerline
is rather straight, plane positions are approximately equidistant
along the centerline, and in regions where the radius of curvature
of the OFT centerline is small, distance between planes is larger
(proportional to the contour mean radius and the angular change
of ny). This last step determines the final position and orienta-
tion of cross-sectional planes in 4-D.

3.4.2 Correction of inaccurate segmentations

Inaccurate segmentation could happen in our procedure because,
like with other deformable models, layer detection using DLMs
depends on the DLM initial state. Even after combining DLMs
with active-contour models, and setting constraints for the DLM
parameters (thickness, orientation), we still found a few sections
that were inaccurately segmented (especially close to the OFT
outlet, where signal-to-noise ratios diminish due to tissue
depth). To solve this problem, an interactive interface was
designed to allow the user to manually adjust cross-sectional
contours and thus reset the state of the DLMs when needed.
With this procedure, accurate segmentation of the 4-D cardiac
OFT wall layer was achieved. In our implementation, inaccurate
segmentations occurred at a very low frequency, with at most
0.2% frames showing failed segmentations. Nevertheless,
even after detection failed, the DLM accurately found the target
tissue again at the next adjacent section or time step.
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3.4.3 Extraction and smoothing of the myocardium layer

Myocardium layer detection presents local fluctuations in space
and time that need to be further smoothed. We proceed by first
smoothing the myocardium mid-layer surface, which is described
by the position vectors, p,,, of the layer DLMs. Smoothing in
space and time was performed (as in Sec. 3.4.1) by calculating
the mean position of four spatiotemporally adjacent layer
DLMs: the corresponding positions of two adjacent cross-sec-
tional planes of the 3-D image set and the corresponding positions
of two adjacent time points (in plane smoothing was performed
using the active-contour). After smoothing the myocardium mid-
layer, layer DLMs are used once more to accurately find the myo-
cardium thickness at the new mid-layer positions. Outer and inner
surface layers of the myocardium are then obtained by linking the
outer and inner edges of the layer DLMs (see Fig. 6). Smoothing
of the outer-layer and inner-layer surfaces is also carried out by
calculating the mean positions of the four spatiotemporally
adjacent points on the surfaces.

3.4.4 Extraction and smoothing of the endocardium/lumen
surface

Once the myocardium layer is extracted, we proceed to extract
endocardium/lumen surfaces. To this end, we first generate pre-
processed images of each cross-sectional plane as described in
Sec. 3.3.1. For the very first cross-sectional plane, edge DLMs
are placed manually around the lumen edge on the preprocessed
image, and the DLM parameters are optimized by maximizing
L., Eq. (3). Edge DLM parameters are then copied to the adja-
cent cross-sectional plane and then optimized. This is repeated
until the whole 3-D dataset is segmented. For subsequent 3-D
datasets, edge DLM parameters are copied from the previous
time step, and then optimized. Like in the case of myocardial
surfaces, after obtaining the lumen surfaces, surface smoothing
is performed by calculating mean positions of four spatiotem-
porally adjacent edge DLM positions. This step completes
the extraction procedure of 4-D surfaces from 4-D OCT images
of the chicken heart outflow tract.

4 Results

We semi-automatically extracted the shapes of HH18 OFT car-
diac tissue layers from 4-D in vivo OCT images of the chicken
heart. More precisely, we extracted 4-D surfaces of the myocar-
dium and tissue-lumen interface over 196 time points spanning
one cardiac cycle (approximately 370 ms), with each 3-D OFT
shape consisting of 50 cross-sections spanning around 700 ym
along the OFT centerline. While we analyze here the extraction
from one set of 4-D images in detail, we have so far successfully
extracted data from seven HH18 OFTs.

To evaluate the accuracy of the extracted results, we com-
pared segmentations of 2-D cross-sectional images performed
with our extraction algorithm and manually. For this study, man-
ual segmentation was performed at three positions along the
OFT: near the inlet, approximately in the middle, and near
the outlet; at three different time points during the cardiac
cycle: when the OFT walls are closed, half-closed, or opened
(see Fig. 9, first to third rows). To compare results we used
the areas enclosed by contours obtained by manual segmenta-
tion, A,,,; contours obtained by automatic segmentation, A,,;
and A_,, which is the area of the intersection between the auto-
matic and manually extracted regions. Two metrics, recall and
precision, were used to evaluate the accuracy of the automatic
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Closed at inlet  Half opened at inlet  Opened at inlet

Fig. 9 Automatic extracted myocardial layer and lumen surfaces. (First
to third rows) Segmentations of cross-sectional planes perpendicular to
the 3-D centerline of the OFT at three time points over the cardiac cycle.
(Bottom row) Segmentations of OFT longitudinal sections. Scale bars:
100 pm.

segmentation. The recall, defined as A.,/A,,,, measures the
ability of the automatic extracted result to match the target tis-
sue; the precision, defined as A,,/A,,, measures the ability of
the automatic extracted result to contain only the target tissue.
The average recall of the myocardium from the nine selected
2-D cross-sectional images was 84.7%, with a standard
deviation of 3.3%, and its precision was 92.8%, with a standard
deviation of 4.4%. The average recall of the lumen from the nine
selected cross-sectional images was 91.9%, with a standard
deviation of 3.3%, and its precision was 93.2%, with a standard
deviation of 5.1%. To further confirm the overall accuracy of the
segmentation, we visually inspected automatic segmentation
results on OFT longitudinal sections at three different time
points (see last row in Fig. 9). We found that in most places
deviations between visual estimations of the location of a
boundary and segmentation lines were smaller than 1 pixel
(around 5 pym). The comparison of segmentation results on
the 2-D cross-sections and longitudinal sections demonstrated
that our segmentation strategy can accurately extract the OFT
surfaces of the myocardium and lumen from 4-D OCT images
of the developing heart even when images are noisy and inten-
sity levels (as well as signal-to-noise ratio) diminish with depth.

Figure 10 shows extracted OFT surfaces from 4-D OCT
images (myocardial surfaces and the lumen-tissue interface sur-
face) as well as volume data (see also Videos 1, 2, and 3). The
extracted OFT shapes showed the peristaltic-like motion of the
myocardial and endocardial layers of the OFT over the cardiac
cycle, characterized by a contraction wave that travels through
the OFT. During contraction, the OFT lumen appears to close,
preventing blood flow, and folding of the endocardium layer
becomes apparent. Folding and unfolding of the endocardium
layer are observed from the extracted endocardium surfaces
(as well as in raw images). The extracted shapes are therefore
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Fig. 10 Extracted 4-D OFT shapes over one cardiac cycle. (a) Extracted OFT layers (represented as surface meshes) versus the original image at time
0 ms; see also (Video 1, MOV, 7.96 MB) [URL: http://dx.doi.org/10.1117/1.JBO.17.9.096005.1] showing the steps of the segmentation procedure.
(b) and (c) Extracted results at times 95 ms, 190 ms, 285 ms, and 370 ms (cardiac cycle is 370 ms). Due to the periodic motion of the heart, the shape of
the OFT at time 370 ms was the same as at time 0 ms. (b) OFT myocardial and endocardial surfaces; see also (Video 2, MOV, 9.30 MB) [URL: http://
dx.doi.org/10.1117/1.JBO.17.9.096005.2] showing the motion of extracted surfaces (green: outer myocardium surface; blue: inner myocardium sur-
face; red: endocardium/lumen surface). (c) 3-D volume data images of the OFT; see (Video 3, MOV, 7.67 MB) [URL: http://dx.doi.org/10.1117/
1.JBO.17.9.096005.3] showing the motion of the heart from the extracted volume data (red: lumen; blue: myocardium, showing intensity levels

in shades of blue).

useful not only to visualize cardiac motion over the cardiac cycle
but also in the analysis of cardiac motion.

We successfully extracted OFT shapes from six other 4-D
image datasets of embryonic chick OFTs at HH18 (not
shown). These chick embryo heart OFTs had similar size,
but 4-D OCT images differed in intensity and level of noise.
In segmenting the OFTs from these datasets, and due to the
robustness of our extraction procedure, there was no need to
adjust DLM parameters in our algorithm. However, a parameter
of the active-contour model, 3 [see Eq. (2)] was adjusted on a
case-by-case basis to avoid deviations of the active-contour from
the target tissue layer. The range of f values used was from
about 1.3 to 1.9 times the value of the other two parameters
a and y (@ = y = 15), which were not modified. Larger values
of # were used when adjacent tissues outside of the myocardium
had higher intensity levels than the myocardium tissue because
this choice of §§ penalized deviations from the myocardium layer
by reducing curvature changes and increasing smoothing. For
other cases, the smaller values of § were chosen. All seven
extracted 4-D chick heart shapes showed similar peristaltic-
like motion of the myocardial and endocardial layers of the
OFT, and endocardial folding upon contraction.

5 Discussion

In this paper, we present a semi-automatic procedure to extract
the shape and motion of developing heart tissues from 4-D OCT
images. The extracted tissue layers included the myocardium
(internal and external surfaces) and the endocardium (which
also represents the lumen-tissue interface). While the method has
been applied to 4-D OCT images of the heart outflow tract of
HHI18 chick embryos, the procedure could also be applied to
other stages of development, other portions of the heart, and
also to other animal models and images acquired with different
imaging modalities. This is, however, outside the scope of this
work. The main characteristic of the presented procedure is
that it can accurately track the dynamics of tissue layer motion
over time, even when motion and deformation are large, and
in the presence of image noise, gaps, and variations in intensity.

The main drawbacks of the extraction procedure presented
are that the procedure is sensitive to initial conditions, and it
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has a relatively high computational cost. Like with other
deformable models, procedures to match the layer and edge
DLMs to tissue layers are sensitive to the initial state (e.g., posi-
tion, orientation). To increase the robustness of the procedure,
we linked DLMs with active-contour models and constrained
some of its parameters (thickness, orientation). To increase
the accuracy of the endocardium detection, which presents
“folding” patterns, in our procedure we preprocessed cross-sec-
tional images. Nevertheless, we found a few sections that were
inaccurately segmented (<0.2%). We solved this problem by
designing an interactive interface that allows the user to first
check the accuracy of the segmentations, and, when needed,
manually correct segmentations that are not accurate. Manual
correction allows “resetting” the state of DLMs, improving
the initial conditions and facilitating accurate detection.

Our segmentation strategy differs from other methods to
extract tissue layers. Most methods'>!* detect tissue layers
using intensity variations, but detection becomes difficult
when adjacent tissue layers are present. Unlike other tem-
plate-matching deformable models used to detect tissue layers,?
which only consider intensities inside of the model, our proce-
dure uses intensities from inside and outside of the DLM; further
intensity levels are adaptive to adjust for the diminishing inten-
sities with tissue depth.

Robustness of the procedure was achieved at the cost of a
modest increase in computations. To achieve robustness, the
layer DLM uses adaptive foreground and background intensity
levels. Further, layer DLMs are linked with an active-contour
model. Nevertheless, in our system (Dell T7400 workstation
with eight core CPUs at 2.0 GHz and 10.0 GB RAM), extracting
the OFT cardiac shape and motion from 4-D OCT images took
about 3 h. Comparing this performance to that of manual segmen-
tations, which can take more than a week for the whole 4-D image
dataset, the proposed procedure enables faster and accurate ana-
lysis of cardiac motion. Thus, while computationally expensive,
4-D segmentation of the OFT of HH18 chick embryos is feasible.

The main advantage of our proposed semi-automatic proce-
dure, is that it achieves robust segmentation of cardiac tissues
from highly dynamic 4-D OCT images. This was confirmed
by applying the algorithm to several 4-D OCT image
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reconstructions of the chick heart OFT, images that differ in the
level of noise, image intensity and embryo orientation, and were
also affected by biological variations, and possibly inaccuracies
in embryo staging. The presented extraction procedure success-
fully segmentated all datasets. We are confident that we could
also successfully apply the algorithm to other developmental
stages and sections of the heart, enabling the study of changes
in cardiac motion over developmental stages and after inter-
ventions.

The extracted 4-D results provide detailed information on the
motion of the OFT wall, which could be used to quantify
motion, tissue strains, or as input for subject-specific computa-
tional models of the developing heart OFT, among other appli-
cations. This work then provides a foundation to later work that
aims at understanding how biomechanical stimuli affect cardiac
development.
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