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Abstract. In optoacoustic tomography, detectors with relatively large areas are often employed to achieve high
detection sensitivity. However, spatial-averaging effects over large detector areas may lead to attenuation of
high acoustic frequencies and, subsequently, loss of fine features in the reconstructed image. Model-based
reconstruction algorithms improve image resolution in such cases by correcting for the effect of the detector’s
aperture on the detected signals. However, the incorporation of the detector’s geometry in the optoacoustic
model leads to a significant increase of the model matrix memory cost, which hinders the application of inversion
and analysis tools such as singular value decomposition (SVD). We demonstrate the use of the wavelet-packet
framework for optoacoustic systems with finite-aperture detectors. The decomposition of the model matrix in the
wavelet-packet domain leads to sufficiently smaller model matrices on which SVD may be applied. Using this
methodology over an order of magnitude reduction in inversion time is demonstrated for numerically generated
and experimental data. Additionally, our framework is demonstrated for the analysis of inversion stability and
reveals a new, nonmonotonic dependency of the system condition number on the detector size. Thus, the pro-
posed framework may assist in choosing the optimal detector size in future optoacoustic systems. © 2016 Society of

Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.21.1.016002]
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1 Introduction
Optoacoustic tomography may be used to generate high-resolu-
tion optical images of biological tissue in vivo at depths of
several millimeters to centimeters.1–4 The method is based on
illuminating the imaged object with nanosecond laser pulses
and measuring the resulting acoustic waves at multiple positions
around the object. The optoacoustic image, which represents
the optical energy deposition (light absorption) in the tissue,
is formed by the use of reconstruction algorithms.5–7 Imaging
blood vessels,8 blood flow,9 or tumor angiogenesis10 has been
demonstrated in previous studies. Of particular interest is the
illumination of tissue at multiple wavelengths in order to iden-
tify the absorption spectra of different photo-absorbing moieties.
Multispectral optoacoustic tomography (MSOT), in particular,
has been shown to resolve oxygenated or deoxygenated hemo-
globin, nanoparticles, fluorescent proteins, and dyes.6,11–13

One of the commonly used classes of algorithms for
optoacoustic image formation is the backprojection (BP)
reconstruction.5,14,15 Despite their ubiquity, BP algorithms
reflect an ideal representation of the optoacoustic problem and
may lead to reconstruction inaccuracies and artifacts, e.g., in
systems in which large-area acoustic detectors are employed.
Model-based reconstruction algorithms represent a potent alter-
native to the BP approaches owing to their ability to more

generally account for system- and geometry-related parame-
ters.16–20 For example, it has been demonstrated that model-
based algorithms can account for the effects of the detectors’
aperture and limited projection data.21–23 In our specific imple-
mentation of the model-based approach, termed interpolated
model matrix inversion (IMMI), the model matrix that describes
the optoacoustic system is precalculated to enable the applica-
tion of versatile algebraic inversion and analysis tools.19,21

Despite the computational efficiency achieved by IMMI, one
of the main disadvantages of model-based reconstruction algo-
rithms is their high computational cost of complexity and
memory, which is nonlinearly scaled with image resolution.
The use of computationally expensive inversion algorithms,
such as singular value decomposition (SVD), is therefore
often limited to low-resolution objects. While IMMI is now
commonly employed in two-dimensional (2-D) MSOT inver-
sions,12,24 the computational times have nevertheless restricted
the widespread use of model-based approaches, in particular
prohibiting their use in real-time MSOT applications25 or
three-dimensional (3-D) problems.23,26

Recently, a wavelet-packet (WP) framework was introduced
to alleviate the computational needs of model-based recon-
struction algorithms.27 The use of WPs enables the decomposi-
tion of the model matrix to significantly smaller matrices, each
corresponding to a different spatial-frequency band in the
image. Inversion is thus performed on a set of reduced matrices
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rather than on a single large matrix. This approach (WP-IMMI)
has led to substantial reduction in the memory requirement for
image reconstruction. However, the mathematical justification
for WP-IMMI was based on the assumption of ideal point
detectors and does not consider the distortion in the detected
signal in the case of finite-aperture detectors (FADs). Currently,
the validity of the WP framework has only been confirmed for
optoacoustic designs that employ point detectors.

In this paper, we adapt the WP framework for imaging sce-
narios in which FADs are used, namely detectors that are flat
over one of their lateral axes and can be modeled in 2-D by
line segments. The proposed generalized WP-IMMI for FAD
(GWP-IMMI-FAD) is demonstrated both as an analysis tool
and as an image reconstruction tool. In the former, we analyze
the reconstruction stability of the different spatial-frequency
bands for several detector lengths using SVD. This analysis
tool enables us to compare the reconstruction characteristics of
detectors of varying lengths and identify which patterns in the
image are most difficult to reconstruct. In the latter, inversion of
the reduced model matrices is performed using truncated SVD
(TSVD) with global thresholding, in contrast to Ref. 27 where
local thresholding was used. The introduction of a global
threshold enables the application of the algorithm even in cases
where some spatial-frequency bands in the imaged object are
impossible to reconstruct.

In our examples, we demonstrate GWP-IMMI-FAD for
image reconstruction for a detector length of 13 mm for
numerically generated and experimental data. In both cases,
reconstruction performance is evaluated for complete- and lim-
ited-view imaging scenarios. We finally discuss the potential
value of GWP-IMMI-FAD as a design tool for optoacoustic
systems and its advantages for image reconstruction in terms of
computational acceleration in comparison to IMMI-FAD and
image enhancement in comparison to BP approaches.

2 Theoretical Background
In a typical optoacoustic imaging setup, in which nanosecond
laser pulses are used and the acoustic medium is assumed to
be homogeneous, the pressure measured by the acoustic detector
pðr; tÞ is often modeled by the following integral equation:21,28

EQ-TARGET;temp:intralink-;e001;63;311pðr; tÞ ¼ Γ
4πν

∂
∂t

Z
jΔrj¼νt

Hrðr − ΔrÞ
vt

ds; (1)

where ν is the speed of sound in the medium, Γ is the Grüeneisen
parameter, HrðrÞ is the amount of energy absorbed in the tissue
per unit volume, s is the spherical surface, and jΔrj is equal to ν
times t. In the case of an FAD, the response of the detector
pdetðtÞ is obtained by integrating pðr; tÞ over the surface of
the detector S.

EQ-TARGET;temp:intralink-;e002;63;199pdetðtÞ ¼
Z
r∈S

pðr; tÞdS: (2)

The discretization of Eq. (2) leads to the following matrix
relation:

EQ-TARGET;temp:intralink-;e003;63;134p ¼ Mz; (3)

where p is a column vector representing the measured acoustic
waves at various detector positions and time instants, z is a

column vector representing the object values, and M is the
forward model matrix.

The reconstruction problem involves inverting the matrix
relation in Eq. (3). When M is well-conditioned, inversion
may be performed by least-squares approach.

EQ-TARGET;temp:intralink-;e004;326;697z ¼ arg min kp −Mzk22; (4)

where kk22 is a squared l2 norm. A closed-form solution to
Eq. (4) exists in terms of the Moore-Penrose pseudoinverse.16

EQ-TARGET;temp:intralink-;e005;326;650z ¼ M†p; (5)

where M† is the pseudoinverse matrix. The advantage of this
approach is that the pseudoinverse matrix may be precalculated
for a given system and be reused for each new dataset, thus
reducing the image reconstruction problem to the matrix-vector
multiplication operation given in Eq. (4). However, the calcula-
tionM† is often not feasible in high-resolution imaging owing to
memory restrictions. In such cases, Eq. (4) is solved iteratively,
e.g., by using LSQR algorithm,16 a least-squares algorithm
based on QR factorization.

In limited-view scenarios22,23,29 or in the case of flat detectors
with large apertures,17,21 the tomographic data may not be suf-
ficient to accurately reconstruct all the features in the images. In
such cases, the model matrix M is ill-conditioned and its inver-
sion requires regularization, which can suppress the effects of
noise and artifacts in the image, e.g., stripe artifacts that appear
in the case of limited tomographic view.22 Two common regu-
larization algorithms that are often used in optoacoustic tomog-
raphy are TSVD and Tikhonov regularization. TSVD has the
advantage of yielding an inverse matrix, similar to the pseudoin-
verse, which can be used for any dataset obtained by the system.
However, because of the prohibitive size of the model matrices,
TSVD may be practically applied only for images with rela-
tively low resolution. Tikhonov regularization is applied by
solving the following equation:

EQ-TARGET;temp:intralink-;e006;326;356z ¼ arg minfkp −Mzk22 þ λkLzk22g; (6)

where λ > 0 is the regularization parameter and L is the regu-
larization operator. Since Eq. (6) may be solved using the LSQR
algorithm, it may be applied to matrices that are significantly
larger than those on which TSVD may be practically applied,
facilitating the reconstruction of high-resolution images.

3 Methods
The proposed reconstruction method, GWP-IMMI-FAD, is
described as follows. First, we define zw as the WP-coefficient
vector of the object, where the reconstruction of z from zw is
given by

EQ-TARGET;temp:intralink-;e007;326;201z ¼ Rzw; (7)

where R is the reconstruction matrix of the WP transform27.
Similarly, we define pw as the WP-coefficient vector of the pro-
jection data by using the decomposition matrix D of the WP
transform.27

EQ-TARGET;temp:intralink-;e008;326;129pw ¼ Dp: (8)

Substituting Eqs. (3) and (7) in Eq. (8), we obtain

EQ-TARGET;temp:intralink-;e009;326;87pw ¼ DMRzw: (9)
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For a given leaf i or spatial frequency band in object decompo-
sition space, the corresponding model matrix is

EQ-TARGET;temp:intralink-;e010;63;730Mi
w ¼ DMRi: (10)

As shown in Ref. 27, the approximate matrix Mi
w and the

approximate vector piw are calculated out of Mi
w and piw for

each leaf by keeping only the significant rows, yielding the
following relation:

EQ-TARGET;temp:intralink-;e011;63;655piw ¼ Mi
wziw: (11)

Equation (11) may be inverted separately for each i, e.g., using
TSVD. For each frequency band, SVD is performed on the
corresponding approximate matrix Mi

w.

EQ-TARGET;temp:intralink-;e012;63;590Mi
w ¼ UiΣiVi;T; (12)

where T denotes the transpose operation, Ui and Vi are unitary
matrices, and Σi is a diagonal matrix containing the singular
values of the decomposition fσijgj¼1: : : J

.
In Ref. 27, the condition number of each approximate matrix

Mi
w was calculated locally, based on its corresponding singular

values.30

EQ-TARGET;temp:intralink-;e013;63;492κilocðMi
wÞ ¼

maxjðjσijjÞ
minjðjσijjÞ

: (13)

This definition of κilocðMi
wÞ can only reveal whether in a specific

spatial frequency band some components’ reconstruction is
more unstable than others. κilocðMi

wÞ does not, however, enable
a comparison between different spatial-frequency bands in terms
of reconstruction robustness. We therefore introduce for each
approximate matrix Mi

w a condition number that is calculated
globally.

EQ-TARGET;temp:intralink-;e014;63;367κiglobðMi
wÞ ¼

maxi;jðjσijjÞ
minjðjσijjÞ

: (14)

The use of κiglobðMi
wÞ enables classifying the different spatial-

frequency bands based on their reconstruction robustness.
The maximum of κiglobðMi

wÞ, i.e., maxi κ
i
globðMi

wÞ, is therefore
an approximation to the condition number of the model matrix
M used in Eq. (3).

The inversion of Mi
w using TSVD requires excluding all

the singular values below a certain threshold. In Ref. 27, an indi-
vidual threshold was determined locally for each matrix Mi

w,
which was proportional to its corresponding maximum singular
value.

EQ-TARGET;temp:intralink-;e015;63;209thiloc ¼ αmaxjðjσijjÞ: (15)

This choice of local thresholds enables regularization only when
the image component that corresponds to the maximum singular
value in each frequency band can be stably reconstructed. Local
thresholds are incompatible, however, with the case in which all
image components in a certain image band cannot be recon-
structed. In such a scenario, the algorithm would fail to reject
the entire frequency band. Therefore, we introduce a single
global threshold in this work, defined as follows:

EQ-TARGET;temp:intralink-;e016;63;88thglob ¼ αmaxi;jðjσijjÞ: (16)

Once the inversion of Eq. (11) has been performed for all i, the
recovered image coefficients in the WP domain ziw may be used
to calculate the image via Eq. (7). Mathematically, the entire
reconstruction procedure may be described by the equation

EQ-TARGET;temp:intralink-;e017;326;708z0 ¼ M†p; (17)

where M† is the approximated inverse matrix of M, which can
be determined by TSVD, and z0 is the approximate solution. As
shown in Ref. 27, the initial approximation may be improved
recursively by using

EQ-TARGET;temp:intralink-;e018;326;632zn ¼ zn−1 þ βM†ðp −Mzn−1Þ; (18)

where zn is the solution at the nth iteration and β is a constant
parameter.27

4 Simulation Results

4.1 Analysis of Image Reconstruction Stability

The ability to perform SVD on the reduced approximate matri-
ces Mi

w enables us to analyze the reconstruction stability for the
different spatial-frequency bands in the image. In the following,
we analyze the image reconstruction stability for a 2-D image in
the case of a 360-projection circular-detection geometry with
a radius of 4 cm and line-segment detectors of various lengths.
We consider an image grid with 150 × 150 pixels, which corre-
sponds to the dimensions of 2 cm × 2 cm. The size of the model
matrix M is 176;040 × 22;500. To store all the elements of the
model matrix M as double class, 39 GB of memory are needed.
However, when the sparsity of the matrix is used, where only
nonzero elements are saved, the memory required to store the
matrix varies from 0.7 to 2.7 GB, depending on the length of
the detector, as shown in Fig. 1.

Two-level WP decomposition is performed with the
Daubechies 6 mother wavelet, leading to 16 distinct spatial-fre-
quency bands, as depicted in Fig. 2(a). A represents the approxi-
mation components of the image, which are achieved via
low-passing, whereas D1, D2, and D3 represent the detail com-
ponents, which are achieved via high-passing.31 Figures 2(b)–2(d)
show the value of κiglobðMi

wÞ for the various frequency bands for
a point detector, and line detectors with lengths of 6 and 13 mm,
respectively. As expected, the effect of spatial averaging reduces

Fig. 1 Amount of memory required to store the model matrix M
described in Sec. 4 when sparsity is exploited and only nonzero
entries are saved. Clearly, the longer the detector length, the higher
the memory requirements. When sparsity is not utilized, the matrix
occupies a memory of 39 GB.
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the reconstruction stability in the higher spatial frequencies.
Figure 2(e) shows the value of the maximum global condition
number of the reduced modal matricesmaxi½κiglobðMi

wÞ� for vari-
ous detector lengths. Interestingly, maxi½κiglobðMi

wÞ� does not
monotonically increase with detector length, but rather reaches
a maximum value at a length of 6 mm.

To verify the nonmonotonic dependency of the condition
number on detector length, the condition number of the
model matrix M was calculated directly for various detector
lengths. The result shown in Fig. 2(f) reveals a behavior similar
to that observed by theWP-based analysis. For the calculation of
the condition number, the MATLAB built-in function “condest”
was used, which is based on the 1-norm condition estimator of
Hager.32 This algorithm gives an estimate for the condition num-
ber without performing SVD, enabling its practical execution
despite the size of the model matrix. Nonetheless, the condi-
tion-number calculations required the use of a PC workstation
with 160 GB RAM, whereas the SVD performed on the reduced
matrices Mi

w for Figs. 2(b)–2(e) was executed on a standard
desktop with a RAM of only 16 GB.

The advantage of GWP-IMMI-FAD is that it not only ena-
bles one to find the frequency bands most susceptible to noise in
the reconstruction, but also enables the identification of their
spatial patterns. This may be achieved by visualizing the
rows in Vi corresponding to the minimum singular values in
each frequency band. In contrast, applying SVD on the model
matrix M, when computationally feasible, can enable the
identification of spatial patterns, but without restriction to spe-
cific frequency bands. Figure 3(a) shows the image generated
from the row of Vi that corresponds to the smallest singular
value in the frequency band for which the highest condition
number was obtained in the case of a 6 mm detector. The figure

Fig. 2 (a) Decomposition components map with two-level wavelet
packets, (b)–(d) condition number map of decomposed model matrix
of the point detector, line detectors with lengths of 6 and 13 mm,
(e) maximum condition number of all decomposition matrices with
different lengths of detectors, and (f) condition number of the model
matrix with different lengths of detectors.

Fig. 3 (a) The image generated by the row in Vi , which corresponds to the minimum singular value in all
the matrices M̄i

w calculated with a detector length of 6 mm. The result corresponds to the image for
which reconstruction is expected to be most unstable. (b) An illustration of a spherical source with
a radius of 200 μm positioned at the location identified in the previous figure panel. (c) The signals
detected from the sphere by detectors of various lengths and (d) their corresponding frequency
content.
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shows that the highest susceptibility to noise is obtained in the
periphery of the image. To verify this result, we simulate the
signal of spherical source with a diameter of 200 μm at the
top-left corner of the image, as illustrated in Fig. 3(b).
Figure 3(c) shows the detected signals for a point detector and
detectors with lengths of 6 and 20 mm, whereas Fig. 3(d) shows
their frequency content. Indeed, the figures reveal that there is
a more substantial loss of high-frequency data in the signal
detected by the 6 mm as compared to the one detected by
the 20 mm detector. We note that the signals presented in
Figs. 3(c) and 3(d) were calculated using the analytical solutions
of Ref. 28 and were not based on the model matrices.

In order to further demonstrate the validity of the results
obtained by GWP-IMMI-FAD, object images were generated
by a random process similar to the one used in Ref. 18. The
images were reconstructed via TSVD with GWP-IMMI-FAD
with several values of α in Eq. (16). Each image consisted of
nine smooth spheres (indexed by i for i ¼ 1; : : : ; 9) with
random origins, radii, and absorbed optical energy densities,
denoted by (xi, yi), Ri, and Ai, respectively. A representative
image is provided in Fig. 4(a). We generated 100 random
images, whose statistics are listed in Table 1. The model matrix
was built by IMMI-FAD (Ref. 21) described in Eqs. (1)–(3) and
used to generate all the synthetic projection data. The mean of
Gaussian white noise set in the projection data is 0, while the
standard deviation (STD) is 2% of the maximum magnitude of
the projection data. The statistical assessments of reconstruction
performance with different regularization parameters are shown
in Figs. 4(b)–4(d). The quality of the reconstructed images
was quantified by calculating the structural similarity (SSIM)
and root mean square deviation (RMSD) between them and

the originating images, as well as bias-variance analysis, as
follows:33

EQ-TARGET;temp:intralink-;e019;326;730SSIMðx; yÞ ¼ ð2μxμy þ C1Þð2σxy þ C2Þ
ðμ2x þ μ2y þ C1Þðσ2x þ σ2y þ C2Þ

; (19)

where x and y represent the originating and reconstructed
images, μx and μy are the corresponding means, σ2x and σ2y
are the corresponding variances, C1 and C2 are small positive
constant, and σxy is the covariance between the images. The
values of SSIM can range from 0 to 1, where higher values cor-
respond to a higher degree of similarity between the images.
RMSD is expressed by

EQ-TARGET;temp:intralink-;e020;326;607RMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ðxi − yiÞ2
vuut ; (20)

where xi and yi are the pixel values of the originating and recon-
structed image, and N is the number of pixels.

For the calculation of the variance and bias, for each of the
random phantom, reconstruction was performed for M ¼ 100

different additive noise signals generated from a Gaussian dis-
tribution with a zero mean and STD of 2% of the maximum
projection data. For each pixel, the variance and bias were
calculated accordingly.

EQ-TARGET;temp:intralink-;e021;326;462Vari ¼
1

M

XM
j¼1

�
yi;j −

1

M

XM
j¼1

yi;j

�2

; (21)

Fig. 4 (a) Schematic illustration of a random object function, (b) mean SSIM of random objects with
different detector lengths and regularization parameters, (c) mean RMSD of random objects with different
detector lengths and regularization parameters, (d) bias-variance curve of the reconstructions with differ-
ent detector lengths (point detector and flat detector with lengths of 1, 2, 3, 4, 5, 6, 8, 13, and 20 mm) and
α (0, 0.05, and 0.1). For all detector lengths, α ¼ 0 (no regularization) gave the highest bias and variance.
In terms of both bias and variance, a detector length of 4 mm gives the worst results.
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EQ-TARGET;temp:intralink-;e022;63;494Biasi ¼
1

M

XM
j¼1

yi;j − xi; (22)

where xi and yi represent the values of the i 0th pixel in the
originating and reconstructed image, respectively, i is the pixel
index, and j ¼ 1: : :M is the index of the added noise signal. The
results for the variance and bias are averaged over all pixels and
are presented in Fig. 4(d) with different detector lengths (point
detector and flat detector with lengths of 1, 2, 3, 4, 5, 6, 8, 13,
and 20 mm) and α (0, 0.05, and 0.1).

4.2 Image Reconstruction for Numerically
Generated Data

A numerical study was performed for full- and limited-view sce-
narios to analyze the imaging performance based on the follow-
ing reconstruction schemes: BP,5 IMMI,16 IMMI-FAD,21 and
the proposed GWP-IMMI-FAD. All reconstructed images were
normalized. A realistic image of a mouse cross-section, shown
in Fig. 5, was used as the originating image, whereas detection
was performed over a circle surrounding the image. The size of
the originating image was 2 cm × 2 cm with 150 × 150 pixels.
We assumed that a line-segment detector with a length of 13 mm

was used for detection and the distance of the detector from the
origin was 4 cm. The model matrix was also built by IMMI-FAD
and used to generate all the synthetic projection data. All recon-
structions were performed for exact and noisy projection data.
The noisy data were generated by adding to the projection
data Gaussian white noise with zero mean and STD equals to
2% of the maximum projection amplitude. In all cases, the
angular increment between the transducer positions was held
at 1 deg. The reconstructions were performed in MATLAB on
a personal computer with an Intel Core i7 2.1 GHz processor
and 16 GB of RAM.

In the reconstructions performed with IMMI and IMMI-
FAD, the inversion of the model matrix was performed using
Tikhonov regularization. The L-curve method was used to
find the Tikhonov regularization parameter λ.34 In the case of
GWP-IMMI-FAD, the WP decomposition was performed
using the Daubechies 6 mother wavelet with two-level full-
tree decomposition for both the model matrix and projection
data, and inversion was performed using TSVD. The L-curve
method was also used to find the regularization parameter α.34

Figure 6 shows the simulation reconstruction results in a com-
plete-view scenario. Figures 6(a)–6(d), respectively, show
the reconstructions using BP, IMMI, IMMI-FAD, and GWP-
IMMI-FAD. Figure 6(e) shows a one-dimensional slice gener-
ated from the reconstructed image taken along the yellow
dashed line in Fig. 6(c). The reconstructions of IMMI obtained
without accounting for the detector geometry resulted in a
reconstructed blurry image as predicted in Ref. 28, whereas both
IMMI-FAD and GWP-IMMI-FAD managed to eliminate the
blur. The SSIMs between the original image and Figs. 6(a)–
6d) are 0.0753, 0.7023, 0.7748, and 0.7780, respectively. The
RMSDs between the original image and Figs. 6(a)–6(d) are
0.3860, 0.0961, 0.0357, and 0.0367, respectively. The total
run time of building the WP decomposition matrices in advance
was ∼1.2 h. TSVD was used in GWP-IMMI-FAD where trun-
cation was performed using α ¼ 0.02 in Eq. (16). Nine iterations
of Eq. (18) were performed in GWP-IMMI-FAD with each iter-
ation lasting 1 s. Thus, after the precalculation of the matrices,
GWP-IMMI-FAD required only 10 s, whereas Tikhonov regu-
larized IMMI-FAD required 215 s.

Table 1 Parameters of the random numerical phantoms.

Index

(x i , y i
) Ri Ai

Mean (mm) STD (mm) Mean (mm) STD (mm) Mean (a.u.) STD (a.u.)

1 (0.001, −0.001) (0.028, 0.028) 0.915 0.031 0.301 0.113

2 (0.002, −0.005) (0.028, 0.029) 0.752 0.028 0.134 0.115

3 (−0.243, −0.396) (0.028, 0.031) 0.119 0.028 0.472 0.117

4 (0.152, −0.499) (0.029, 0.031) 0.121 0.029 0.478 0.114

5 (−0.395, −0.005) (0.029, 0.028) 0.251 0.026 0.252 0.111

6 (0.197, 0.055) (0.029, 0.030) 0.247 0.032 0.269 0.116

7 (−0.892, −0.898) (0.026, 0.033) 0.097 0.034 0.962 0.113

8 (−0.858, 0.902) (0.031, 0.028) 0.079 0.022 0.971 0.105

9 (0.817, 0.807) (0.023, 0.028) 0.079 0.024 0.980 0.123

Fig. 5 The numerical phantom used as the originating image in the
simulations.

Journal of Biomedical Optics 016002-6 January 2016 • Vol. 21(1)

Han, Ntziachristos, and Rosenthal: Optoacoustic image reconstruction and system analysis. . .



Figure 7 shows the images reconstructed from the noisy sim-
ulation data for the limited-view scenario in which only the
projections on the left side of the images were used (180-deg
angular coverage). Figures 7(a)–7(d) show the reconstructions
of BP, IMMI, IMMI-FAD, and GWP-IMMI-FAD, respectively.
For comparison, we show in Fig. 7(e) the reconstruction
obtained via WP-IMMI-FAD with local thresholding [Eq. (13)]
and the same value of α as the one used in Fig. 7(d). Figure 7(f)
shows the absorbed energy density profile at the same position
in Fig. 7(c) among the original image, reconstructions of
IMMI-FAD, and GWP-IMMI-FAD. The SSIMs between the
original image and Figs. 7(a)–7(e) are 0.0552, 0.4504, 0.6266,
0.6212, and 0.6090, respectively. The RMSDs between the
original image and Figs. 7(a)–7(e) are 0.4114, 0.1858, 0.0833,
0.0792, and 0.0890, respectively. In GWP-IMMI-FAD, TSVD
was used in GWP-IMMI-FAD where truncation was performed
using α ¼ 0.1 in Eq. (16). The total run time of building the WP
decomposition matrices in advance was ∼40 min. Six iterations
of Eq. (18) were used for the proposed method and each iteration
required 1 s. Accordingly, the reconstruction time of GWP-
IMMI-FAD was only 7 s, whereas IMMI-FAD required 104 s.

5 Experimental Results
In this section, we present the application of GWP-IMMI-FAD
on experimental optoacoustic data obtained from imaging
microspheres and a mouse brain. The microsphere phantom
was made out of transparent agar with a thin layer containing
numerous dark polymer microspheres with a diameter of
100 μm, similar to the ones used in Ref. 35. The objects
were imaged in the optoacoustic tomography system described

in Ref. 21. Briefly, a tunable optical parametric oscillator laser
providing <8 ns duration pulses with 30 Hz repetition frequency
at the wavelength of 650 nm was used to illuminate the mouse
under investigation. The laser’s beam was expanded to ∼2 cm

and split into two beams, allowing a uniform illumination
around the imaged object. A 15 MHz cylindrical focused trans-
ducer was used to detect the optoacoustic signal with a detection
radius of 19.05 mm around the microspheres, while a 7.5 MHz
cylindrical focused transducer with a detection radius of
25.9 mmwas used for the mouse head. Although acoustic focus-
ing is generally limited by diffraction, it has been shown that this
geometry may be approximated by a 2-D model with line-seg-
ment detectors.21 In order to improve the signal-to-noise ratio of
the signals, each projection was obtained by averaging 32 inde-
pendent measurements. The microspheres reconstruction was
set with the size of 2 cm × 2 cm and 200 × 200 pixels, while
the mouse brain reconstruction was set with the size of 1.3 cm ×
1.3 cm and 130 × 130 pixels. All reconstructed images were
normalized to their maximum and negative values in the images
were set to zero.

Figures 8(a)–8(d), respectively, show the full-view reconstruc-
tions of microspheres obtained by BP, IMMI, IMMI-FAD, and

Fig. 6 Reconstructions of the numerical mouse phantom in complete-
view noiseless case using (a) BP, (b) IMMI, (c) IMMI-FAD, and
(d) GWP-IMMI-FAD. (e) Absorbed energy density profile of original
image, reconstructions of IMMI-FAD and GWP-IMMI-FAD along
the yellow dashed line in (c).

Fig. 7 Reconstructions of the numerical mouse phantom from the
projections on the left plane alone over 180 deg using (a) BP,
(b) IMMI, (c) IMMI-FAD, (d) GWP-IMMI-FAD, and (e) WP-IMMI-FAD.
(f) Absorbed energy density profile of original image, reconstructions
of IMMI-FAD and GWP-IMMI-FAD along the yellow dashed line in (c).
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GWP-IMMI-FAD. In GWP-IMMI-FAD, TSVDwas used where
truncation was performed using α ¼ 0.16 in Eq. (16). Clearly,
the reconstruction achieved by GWP-IMMI-FAD was consider-
ably sharper than reconstructions obtained by BP and IMMI and
similar to the one obtained by IMMI-FAD. After all the matrices
had been precalculated, the reconstruction using GWP-IMMI-
FAD with 10 iterations took only 80 s, whereas the IMMI-FAD
reconstruction required 1646 s.

Figures 9(a)–9(d), respectively, show the full-view reconstruc-
tions of the mouse brain obtained by BP, IMMI, IMMI-FAD, and
GWP-IMMI-FAD. TSVD was used in GWP-IMMI-FAD where
truncation was performed using α ¼ 0.08 in Eq. (16). Clearly,
the reconstruction achieved by the model matrices, which

included the effect of the line-segment detectors, was sharper
than the reconstruction of point detectors. In contrast, the differ-
ence between Fig. 9(c) and 9(d) was small and could hardly be
detected by visually inspecting the reconstructions. After all
the matrices had been precalculated, the reconstruction using
GWP-IMMI-FAD with 10 iterations took only 11 s, whereas
the IMMI-FAD reconstruction required 197 s.

GWP-IMMI-FAD was experimentally demonstrated for
limited-view projection data of the mouse brain, in which the
angular coverage of the projection data was reduced to 180°.
Figures 10(a)–10(c), respectively, show the reconstructions
using BP, IMMI, and IMMI-FAD, whereas Fig. 10(d) presents
the reconstruction obtained by GWP-IMMI-FAD performed
with seven iterations. For TSVD of each matrix, the truncation
was performed using α ¼ 0.1 in Eq. (16). As can be seen in
Fig. 10, the use of GWP-IMMI-FADwith TSVD achieved better
suppression of the stripe artifact than IMMI-FAD. After the pre-
calculation of the model matrix and reduced matrices, GWP-
IMMI-FAD took only 8 s, whereas IMMI-FAD reconstruction
required 90 s.

6 Discussion
Model-based optoacoustic reconstruction algorithms offer a
promising alternative to conventional BP formulae owing to
their ability to be adjusted to arbitrary tomographic geometries.
In the case of large-area detectors that are flat over one of their
lateral axes, accurate modeling of the detector geometry has
shown to improve image fidelity and increase the image reso-
lution. However, the advantage of enhanced images is often
overshadowed by the high computational cost model-based
inversion incurs, which prevents high-throughput imaging.
The case of large-area detectors is especially prohibitive for
high imaging rates owing to the substantial increase in matrix
size due to the modeling of the detector.

In this paper, we develop GWP-IMMI-FAD, which is the
generalization of the WP framework to FADs. Under the WP
framework, the image is divided into a set of spatial-frequency

Fig. 8 Optoacoustic reconstructions of microsphere from experimen-
tal data using (a) BP, (b) IMMI, (c) IMMI-FAD, and (d) GWP-IMMI-
FAD.

Fig. 9 Optoacoustic reconstructions of a mouse’s head from exper-
imental data using (a) BP, (b) IMMI, (c) IMMI-FAD, and (d) GWP-
IMMI-FAD.

Fig. 10 Optoacoustic reconstructions of a mouse’s head from limited
view (180 deg) experimental data obtained using (a) BP, (b) IMMI,
(c) IMMI-FAD, and (d) GWP-IMMI-FAD.
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bands that are individually reconstructed from only a fraction of
the projection data, leading to a set of reduced model matrices.
This approach enables the use of TSVD to obtain a regularized
inverse matrix to the tomographic problem. In contrast, inver-
sion of the originating model matrix cannot be generally
performed using TSVD for high-resolution images owing to
the prohibitively large matrix size. Therefore, regularization
requires applying iterative optimization algorithms, which are
characterized by significantly higher run time. One notable
improvement in GWP-IMMI-FAD over the original WP frame-
work, developed for point detector, is the introduction of a
global threshold for TSVD. As a result, GWP-IMMI-FAD
applies also to cases in which entire spatial-frequency bands
in the imaged object are difficult to reconstruct, as seen in the
examples presented in Figs. 7(d) and 7(e).

We show that GWP-IMMI-FADmay be used for both system
analysis and image reconstruction. In the former case, GWP-
IMMI-FAD enables one to calculate the global condition num-
ber of each spatial-frequency band and, thus, determine the
stability of its reconstruction. Additionally, the use of WPs and
SVD enables one to identify which spatial patterns are most dif-
ficult to reconstruct and to categorize them based on their spatial
frequency. In this work, we used GWP-IMMI-FAD to find the
dependency of reconstruction stability on the detector length.
In our example, a nonmonotonic relation was obtained in
which the global condition number achieved its maximum for
a 6 mm long detector. This relation matched well with the con-
dition number of model matrixM with various detector lengths.
Using SVD, we show in Fig. 3 that the reconstruction instability
for the 6 mm long detector in the example is most severe for the
periphery of the image. Indeed, our analytical analysis revealed
that when a small spherical source is positioned at the corner of
the image, the signal detected by a 6 mm detector is more low-
passed than the one detected by a 20 mm detector.

The result obtained by the analysis of GWP-IMMI-FAD is
supposedly inconsistent with the work in Ref. 36, which
shows that the amount of smearing created by flat detectors
is proportional to the dimensions of their aperture. Based on
the analysis in Ref. 36, one might conclude that longer detectors
led to stronger attenuation of high frequencies in the projection
data and, therefore, that the global condition number should
scale with detector length. However, our analysis shows that,
in our example in Fig. 3(d), a 6 mm long detector led to stronger
attenuation of high frequencies than a 20 mm detector. This
supposed contradiction between our results and those of
Ref. 36 may be resolved by considering that the analysis in
Ref. 36 was performed for a reconstruction algorithm, namely
the filtered BP algorithm, which assumes an ideal point detector.
Thus, in the context of Ref. 36, any discrepancy between the
forward and inverse models would lead to image distortion
and possibly smearing. Indeed, although the signal generated by
a 20 mm detector is sharper than the one generated by the 6 mm
detector, it involves a significantly larger delay when compared
to the signal detected by the point detector, as can be seen in
Fig. 3(c). Finally, we note that reconstruction formulae exist
for the case of infinitely long line detectors,37 whose perfor-
mance in high-resolution imaging cannot be explained by the
analysis given in Ref. 36.

To further validate our conclusions, we compared the
reconstructions of randomly generated images obtained with
several detector lengths. The reconstruction results revealed a
behavior similar to those obtained by the SVD analysis of

GWP-IMMI-FAD, namely that starting from a certain detector
length, the stability of the reconstruction increases with detector
length. The highest reconstruction error in that case was
obtained for a detector length of 4 mm. While this value varies
from the one obtained via SVD analysis, we note that the ran-
domly generated images represent only a small portion of all the
possible images, whereas SVD considers all possible images.
Nonetheless, the similar trends obtained in Figs. 2(e)–2(f)
and in Figs. 4(b)–4(c) serve as validation to the analysis method
developed in this paper. Further validation of this conclusion is
obtained from the bias-variance curves in Figs. 4(d), which
showed that the variance associated with stability and noise
amplification has a nonmonotonic behavior similar to the con-
dition number prediction in Figs. 2(e)–2(f) and the results in
Figs. 4(b)–4(c). Finally, we note that the exact values of the con-
dition numbers and reconstruction errors implicitly depend on
the resolution specified by the grid on which the image is rep-
resented. Increasing the grid resolution is expected to increase
the effect of the detector length on the condition number of the
matrices describing the system.

The application of GWP-IMMI-FAD for image recon-
struction was showcased for simulated and experimental opto-
acoustic data, wherein both the cases of full- and limited-view
tomography were studied. In all examples, the model matrix was
too large for applying TSVD directly on it, and Tikhonov regu-
larization was used instead. However, the reduced matrices in
the WP decomposition were sufficiently small for performing
TSVD. In case of the full-view reconstruction, for both simu-
lation and experimental data, the corresponding reconstruction
quality obtained using the proposed GWP-IMMI-FAD was
comparable to the one obtained using Tikhonov regularization
IMMI-FAD. In case of the limited-view simulation reconstruc-
tion, GWP-IMMI-FAD got slightly worse performance than
Tikhonov regularization IMMI-FAD did. However, for the lim-
ited-view experimental data, GWP-IMMI-FAD achieved better
suppression of the stripe artifacts in the reconstruction. In all the
examples studied, over an order of magnitude improvement in
reconstruction time was achieved by GWP-IMMI-FAD com-
pared to IMMI-FAD.

The performance demonstrated in this work may prove use-
ful for high-throughput optoacoustic imaging studies, which
may require the reconstruction of thousands of cross-sectional
images. Moreover, the results suggest that the WP framework is
not an approach that is restricted to ideal imaging scenarios,
but that it could be rather generalized to manage the effects
of finite-size aperture and limited-view tomography. Further
generalization may be achieved by applying this framework
to geometries employing focused detectors as well as to 3-D
reconstruction problems, in which a greater need exists for
acceleration of model-based reconstruction times. Finally,
GWP-IMMI-FADmay be used as a tool for optoacoustic system
design. Already in this work, GWP-IMMI-FAD revealed an
unknown property of systems with FADs: Beyond a certain
detector length, further increments in length may lead not
only to stronger optoacoustic signals, but also to more stable
reconstructions.
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