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Abstract. Spinal cord injury (SCI) triggers several lipid alterations in nervous tissue. It is characterized by exten-
sive demyelination and the inflammatory response leads to accumulation of activated microglia/macrophages,
which often transform into foam cells by accumulation of lipid droplets after engulfment of the damaged myelin
sheaths. Using an experimental rat model, Raman microspectroscopy was applied to retrieve the modifications
of the lipid distribution following SCI. Coherent anti-Stokes Raman scattering (CARS) and endogenous
two-photon fluorescence (TPEF) microscopies were used for the detection of lipid-laden inflammatory cells.
The Raman mapping of CH2 deformation mode intensity at 1440 cm−1 retrieved the lipid-depleted injury
core. Preserved white matter and inflammatory regions with myelin fragmentation and foam cells were localized
by specifically addressing the distribution of esterified lipids, i.e., by mapping the intensity of the carbonyl Raman
band at 1743 cm−1, and were in agreement with CARS/TPEF microscopy. Principal component analysis
revealed that the inflammatory regions are notably rich in saturated fatty acids. Therefore, Raman spectroscopy
enabled to specifically detect inflammation after SCI and myelin degradation products. © 2016 Society of Photo-Optical

Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.21.6.061008]
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1 Introduction
The spinal cord is part of the central nervous system (CNS). It is
formed by white matter located strictly aligned long nerve
fibers, and by gray matter, which contains the neuronal cell
bodies. The nerve fibers, named axons, are covered by sheaths
of myelin, an insulating lipid-based substance responsible for
the saltatory action potential propagation. Several types of glial
cells perform essential functions both in white and gray matter
and influence the neuronal function: astrocytes regulate homeo-
stasis and interaction between synapses, oligodendrocytes form
the myelin sheaths, microglia are the resident immune cells
within neuronal tissue.1

Spinal cord injury (SCI) is the result of an initial physical
trauma followed by degenerative processes. Necrotic cell
death and hemorrhage take place immediately after induction
of the lesion. Secondary events including inflammation, edema,
and ischemia lead to additional cell death and axonal degener-
ation, culminating in the formation of a scar.2 The pathological
changes in the white matter of spinal cord after injury involve
gradual thinning and degradation of the myelin sheath.3 The
axonal damage and the demyelination that follow the injury
lead to permanent functional impairment.4

The clearance of myelin fragments after injury involves acti-
vated microglia and macrophages. Microglia rapidly responds to
various kinds of CNS injury by transforming into large phago-
cytes, thereby removing debris. Additionally, invading macro-
phages migrate from the blood in the injured region after

blood brain barrier damage and contribute to myelin
clearance.5 Myelin has very high lipid content (70% to 75%
of its dry weight).5 Demyelinated lesions are thus characterized
by the presence of lipid-laden macrophages, which develop the
distinctive morphology of foam cells by engulfment of large
amounts of myelin-derived lipids.6 Foam cells originate both
from activated microglia and infiltrating macrophages.7

It is well known that cytoplasmatic lipid droplets in foam
cells mainly consist of lipid esters covered by a phospholipid
monolayer. The lipid metabolism within the macrophages is
complex and was investigated in several studies, partly leading
to contradictory results.8,9 Macrophages in SCI contain myelin,
as demonstrated by analysis of histological staining.10,11 This
was also confirmed by in vitro studies: macrophages that
were incubated with myelin transformed into foam cells mainly
laden with intracellular droplets of myelin. However, the same
study revealed the presence of neutral lipids, too.6 It has been
widely demonstrated that the composition of lipid droplets in
foam cells is very sensitive to the types of lipids that were
engulfed by the cell. Macrophages that were cultured in vitro
accumulated both saturated and unsaturated fatty acids,12

as well as triglycerides13 and cholesteryl fatty acid esters,14

depending on the composition of the culture media. Microglia
activation in vitro leads to the accumulation of lipid droplets and
biosynthesis of triglyceride as well.15

Standard techniques for studying SCI-induced tissue altera-
tions are based on the use of histological and immunohisto-
chemical methods, which require extended tissue processing
and cannot be applied in vivo. Chemical fixatives do not
react with most lipids, so lipid bodies are not preserved in
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conventional morphologic methods and are vacant in histologi-
cal sections.8 The use of noninvasive label-free techniques that
can be applied on the fresh, unfixed tissue is thus beneficial
for study of lipids in SCI and becomes mandatory for in vivo
monitoring. Coherent anti-Stokes Raman scattering (CARS)
microscopy is fast, intrinsically confocal, and effective in imag-
ing of myelin and lipid bodies on native tissue.16,17 Raman
spectroscopy is an optical technique that can be applied both
on fresh, unfixed tissue and in vivo to retrieve the entire bio-
chemical information.

The overlap of the characteristic Raman signals from the dif-
ferent tissue biomolecules, such as proteins, lipids, nucleic
acids, and carbohydrates, encodes a large amount of information
potentially useful for diagnostic purposes18 and the combination
of spectroscopy and microscopy enables the localized biochemi-
cal characterization of tissue.

Despite their potential, Raman spectroscopy was rarely
applied to investigate SCI. Saxena et al.19 applied point
Raman measurements to study demyelination and chondroitin
sulfate proteoglycan upregulation after spinal cord hemisection.
In a previous study, we applied infrared and Raman microspec-
troscopy in combination with multiphoton microscopy for the
detection of lipid depletion and fibrotic scarring after SCI in
a rat model of hemimyelonectomy,20 as well as for assessing
the effects of alginate implants on scarring and demyelination.21

Here, we focused on inflammation and retrieved the bio-
chemical information about lipid alterations following SCI in
rat models by application of Raman microspectroscopy. CARS
microscopy was used to differentiate myelin sheaths, myelin
debris, and lipid droplets. Endogenous two-photon fluorescence
(TPEF) was used to localize inflammatory cells.22

2 Methods

2.1 Animal Experiments and Sample Preparation

A 2-mm long hemisection of spinal cords at the level T9 of tho-
racic vertebrae was surgically induced in adult Wistar female
rats as described elsewhere.20,21 Five animals were included
in the study (indicated as #1 to #5); one animal received an
unfunctionalized alginate hydrogel implant in the lesion (#5).
After 1 month, the animals were perfusion-fixed using 4% par-
aformaldehyde (PFA) in phosphate-buffered saline. The spinal
cord was removed and postfixed in PFA for 24 h at 4°C.
Cryoprotection in rising sucrose concentration (10% for 24 h
and 30% for 24 h) was followed by embedding the isolated spi-
nal cord in tissue freezing medium (Leica, Nussloch, Germany).
The samples were snap frozen on dry ice and stored at −80°C.
Longitudinal cryosections of 16 μm thickness were prepared on
CaF2 slides for Raman spectroscopy. Consecutive sections were
prepared on glass slides for CARS/TPEF microscopy and his-
tology. The sections were stored at −20°C until use and allowed
to thaw for 30 min prior to spectroscopic analysis or further
histological processing.

All animal experiments were performed in accordance
with the guidelines of the Dresden University of Technology
and were approved by the Regierungspräsidium Dresden,
Germany (AZ 24-9168.11-1/2013-37).

2.2 Hematoxylin and Eosin Staining

The sections were fixed in methanol–acetone (1:1), washed in
aqua dest, and incubated in Meyer’s hematoxylin/hemalum for

3 min. After washing in aqua dest, the tissue was briefly
destained in HCl–ethanol solution. Washing using tap water
for 5 min was followed by 3 min staining in eosin (1% eosin
G in 80% ethanol). The sections were dehydrated with rising
ethanol concentrations, cleared in xylene and coverslipped
using DePex.

2.3 Raman Spectroscopy

Raman spectroscopy was performed as described elsewhere.20

Briefly, the excitation was performed with a 785-nm diode
laser, propagated with a 100-μm optical fiber, and focused by
a 50 × ∕0.75 microscope objective, leading to a focal spot of
about 20 μm. The Raman scattering was collected in reflection
configuration and sent to the spectrograph (Raman Rxn1, Kaiser
Optical Systems Inc., Ann Arbor, Michigan). Raman spectra
were acquired in the range 150 to 3250 cm−1. The spectral res-
olution was 4 cm−1. An integration time of 750 ms and two
accumulations were used for spectra acquisition. Maps were
recorded with a step size of 23 μm both in x and y directions.

The datasets were imported in MATLAB (MathWorks Inc.,
Natick, Massachusetts). The spectra were reduced to the region
450 to 1800 cm−1. A variable baseline was calculated for
each spectrum (function “msbackadj” of the MATLAB
Bioinformatics Toolbox) and normalization was obtained by
standardizing the area under the spectra (function “msnorm”
of the MATLAB Bioinformatics Toolbox).

Maps were generated by plotting the intensity of selected
bands. The band intensities were calculated as area under the
curves in the following range: 1375 to 1455 cm−1 (for evalu-
ation of lipids) and 1728 to 1758 cm−1 (for evaluation of
lipid esterification). Principal component analysis (PCA) was
performed on a dataset formed by the spectral data of all sam-
ples. The function “pca” of the Statistics and Machine Learning
Toolbox of MATLAB was used. The score values were reas-
sembled and used to plot the intensity maps of each sample.

2.4 Coherent Anti-Stokes Raman Scattering/
Endogenous Two-Photon Fluorescence
Microscopy

CARS imaging was performed as described elsewhere.20

Shortly, 2-ps Erbium fiber lasers emitting at 780 and
1005 nm (Femto Fiber Pro NIR and TNIR, Toptica, Gräfelfing,
Germany) were used to excite the symmetric stretching vibra-
tion of methylene at 2850 cm−1. A laser scanning microscope
(AxioExaminer with LSM7, Carl Zeiss Microscopy GmbH,
Jena, Germany) was used to raster the laser beams, which
were focalized on the samples by a 20 × ∕1.0 water immersion
objective. Using nondescanned detection, the CARS signal was
collected in transmission (band-pass filter 633 to 647 nm). The
endogenous TPEF simultaneously generated together with
CARS by the ultrashort laser excitation was collected in
reflection configuration in the range 500 to 550 nm. CARS
and TPEF images were merged using complementary colors
(CARS: magenta, TPEF: green) to comply with color percep-
tion deficiencies.23

3 Results and Discussion
Five samples of SCI showing different degrees of inflammatory
responses were selected according to the hematoxylin and eosin
(H&E) staining and are shown in Figs. 1(a)–1(e). H&E is one of
the primary stains used in histology and is the gold standard for
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Fig. 1 Cryosections of SCI in rat models. (a–e) H&E staining; (f–k) Raman intensity maps of the band at
1440 cm−1 (CH2 deformation vibration); (l–p) CARS image (tuned to excite the CH2 symmetric stretching
vibration); (q–u) endogenous TPEF; (v–z) merged CARS (magenta) and TPEF (green) images. Scale
bar: 0.5 mm. The dotted lines in (a–e) indicate hemisection positions. Arrows in (f–h) and (k) indicate
lipid-rich areas in the injured region. The boxes in (l), (q), and (v) indicate the position of zoom-in
images of Fig. 2.
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pathology. Hematoxylin is a blue stain that binds to nucleic
acids. Eosin is a pink stain that binds to acidophilic substances
such as proteins. The samples in Figs. 1(a), 1(c), and 1(e) dis-
play extended inflammation inside and around the lesion core;
the sample in Fig. 1(b) has areas of inflammation at the lesion
site only, while the sample in Fig. 1(d) has less inflammatory
cells that are mainly localized near the large cysts. Cysts are
located mainly at the lesion site, which is indicated by the dotted
line in the figure. Raman maps of several square millimeters in
size covering the lesion site and the surrounding regions were
acquired and used to visualize the distribution of lipid species
inside the nervous tissue [Figs. 1(f)–1(k)] by plotting the inten-
sity of the band at 1440 cm−1, which is attributed to deformation
vibrations of CH2 functional groups.24 The lesion core is gen-
erally poorer of lipids when compared to the surrounding tissue
and therefore can be readily recognized. This indicates the lack
of nervous tissue at the injury site and subsequent demyelination
in adjacent regions, in agreement with previous results.20 Areas
with high lipid content are visible inside or immediately nearby
the lesion in four samples [see arrows in Figs. 1(f)–1(h) and
1(k)]. However, the Raman maps did not enable single axons
to be recognized (at least with the lateral resolution that char-
acterizes our system) and therefore did not show whether the
high lipid content is due to the presence of functional myelinated
axons.

CARS microscopy addressing CH2 symmetric stretching
vibration was applied in order to combine the chemical infor-
mation about lipid distribution with the cellular morphology
of the tissue, and therefore to identify axons and cells. The
amount of biochemical information is traded-off at the advan-
tage of speed, and label-free imaging of whole sections is per-
formed in minutes. The combination of the morphochemical
information supplied by CARS microscopy with the biochemi-
cal fingerprint of lipid species provided by Raman spectroscopy
was already assessed for investigation of lipid droplets.25

On sections of spinal cord tissue, CARS microscopy pro-
vides the overall distribution of lipids, thereby visualizing

demyelination at the lesion site in a way similar to Raman map-
ping based on intensity of a CH2 deformation band [compare
Raman maps in Figs. 1(f)–1(k)] and CARS images in Figs. 1(l)–
1(p). Due to the submicrometric lateral resolution and the inher-
ent confocality, CARS microscopy allows the visualization of
subcellular structures. Figure 2 shows in more detail the region
with high lipid content immediately nearby the lesion of sample
#1 and illustrates the tissue micromorphology. The H&E stain-
ing in Fig. 2(a) shows the microcystic morphology of damaged
nervous tissue (on the left side of images), compared to the com-
pact and highly ordered white matter in the contralateral tissue
(on the right side of images). The CARS image in Fig. 2(b) pro-
vides additional morphochemical information: lipid droplets
and fragmented myelin sheaths are localized in the damaged
tissue, while the contralateral white matter is characterized by
a strictly aligned axonal morphology. The simultaneous acquis-
ition of TPEF [Fig. 2(c)] adds information about the extent of
microglia/macrophages activation and therefore localizes the
inflammation.20,22 TPEF shows a clear overlap with the distri-
bution of lipid droplets in the inflammatory region, while no
fluorescent cells are present in the normal white matter [merged
CARS and TPEF images in Fig. 2(d)]. Therefore, it constitutes
an indicator for the presence of foam cells, i.e., activated micro-
glia/macrophages that got laden with cytoplasmatic lipid drop-
lets after engulfment of large quantities of myelin debris. The
comparison with the H&E staining confirms the presence of
foamy macrophages in the same regions.

The high lipid content regions indicated by arrows in the
Raman maps of Figs. 1(f)–1(k) correspond to inflammatory
regions with disrupted myelin sheaths, presence of fluorescent
foam cells and devoid of integer myelinated axons, as identified
by CARS-TPEF imaging. This clearly shows that the lipid dis-
tribution by spectroscopic mapping of the deformation band of
CH2 groups is not exhaustive for evaluation of white matter
injury. In the CNS, myelin clearance is slow:26,27 as myelin
debris and foam cells remain in the tissue for weeks after the
injury, the sole evaluation of the lipid content does not allow

Fig. 2 Regionwith high lipid content in more detail. (a) H&E staining, (b) CARS, (c) TPEF, and (d) merged
CARS/TPEF images comparing morphology of normal white matter in preserved spinal cord and foam
cells in the injured rat spinal cord (sample #1). Scale bar: 200 μm.
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distinguishing between preserved regions of white matter with
properly myelinated axons and regions of ongoing fragmenta-
tion of myelin sheaths and inflammation.

After SCI, myelin debris is taken up by phagocytic cells.
Myelin is composed by cholesterol, phospholipids, galactoli-
pids, and plasmalogens in a molar ratio of approximately
2:2:1:1.5 Therefore, the metabolites of cholesterol and phospho-
lipids are expected to determine the composition of lipid drop-
lets in macrophages and their spectral markers were analyzed to
retrieve the inflammation.

Intracellular lipid droplets are dynamic organelles,28 where
cholesterol is stored as cholesteryl esters. The sterol ring vibra-
tions in free cholesterol and cholesteryl esters produce a sharp
and characteristic Raman band at 697 cm−1.29,24 However, a
mapping of the sterol vibration band intensity does not enable
to visualize the inflammation (data not shown). The esterifica-
tion of cholesterol is opposed by neutral cholesteryl esters
hydrolysis, which is critical for maintenance of cellular choles-
terol homeostasis.30 The free cholesterol is either released by
macrophages in the intracellular space to be recycled on site,
or is removed by migration of macrophages away from the
injury, but no degradation of the sterol ring takes place in
foam cells, since mammalian cells do not have this ability.30

This explains why monitoring the sterol ring distribution by
Raman spectroscopy is not useful for detection of degrading
myelin and foam cells.

Lipid esterification is the key process for storage in lipid
droplets. Also phospholipids are completely hydrolyzed in
foam cells to produce a pool of free fatty acids31 that are sub-
sequently esterified.32 The band of carbonyl group stretching
vibration at 1743 cm−1 33,34 constitutes a marker of cholesteryl
and fatty acid esters in Raman spectra. The carbonyl vibration
intensity maps of all samples are shown in Fig. 3. The highest

degree of lipid esterification is located in the injured regions and
colocalizes with the foam cells as detected with CARS/TPEF
microscopy (compare with Fig. 1). The average Raman spec-
trum calculated in an injured tissue region (12 × 12 pixels) char-
acterized by lipid esterification is shown in Fig. 3(f), compared
with the average spectrum calculated in a region (12 × 12 pixels)
of preserved white matter. The carbonyl band is visible in the
spectrum of the injured region and absent in the one of white
matter.

For the interpretation of the maps in Fig. 3, it has to be con-
sidered that CNS lipids are particularly susceptible to oxidation
by virtue of their high content of unsaturated fatty acids. Many
studies have demonstrated increased oxidative damage and lipid
peroxidation in CNS injuries.35 Advanced lipid peroxidation
end-products include a variety of reactive carbonyl com-
pounds,36 which could contribute to the intensity of band at
1743 cm−1. However, the time frame of lipid oxidation in rat
SCI is limited to the acute phase and resolves at around 5 days
after injury.37 As no significant lipid peroxidation is expected
one month postinjury, the maps of Fig. 3 represent the distribu-
tion of esterified lipids.

The intensity maps discussed above elucidate the distribution
of lipids, sterols, and esterified lipids in the injury region versus
normal nervous tissue. However, they do not indicate whether
the injured and inflammatory regions are enriched of other types
of lipids or fatty acids, which are eventually produced by myelin
degradation inside the foam cells or as part of inflammatory
pathways. This can be retrieved with multivariate methods,
i.e., PCA.

When PCA is performed on the entire dataset (i.e., on the
spectral data of all samples merged in one work space), the
first to fourth components indicate tissue compounds that are
not related to the distribution of inflammation, but represent

Fig. 3 Carbonyl vibration intensity maps of all samples. (a)–(e) Maps of intensity of the carbonyl stretch-
ing vibration at 1743 cm−1, illustrating the distribution of esterified lipids. Scale bar: 0.5 mm. (f) Raman
spectra of regions with high lipid esterification (injury) and low lipid esterification (white matter); the spec-
tra were calculated by average in regions 12 × 12 pixels large, as indicated by boxes in (c).
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other tissue constituents (as for example lipids and collagen,
data not shown). The fifth component clearly appears to be
associated to the presence of activated microglia/macrophages
(Fig. 4). As it can be seen by comparing the maps of Figs. 4(a)–
4(e) with the TPEF images of Figs. 1(q)–1(u), high pixel inten-
sity areas—representing higher score—identify the inflamma-
tory regions with accumulation of fluorescent macrophages.
The colocalization with lipid droplets in the CARS image
and with TPEF is shown with more detail in Figs. 4(g)–4(i).
The fraction of variance associated to this component is as
small as 0.13%, indicating a compound with very low concen-
tration within the tissue. The corresponding loading vector
[Fig. 4(f)] is consistent with saturated fatty acids. The positive
narrow signals at 1060 and 1126 cm−1 are attributed to C─C

stretching vibration, and the ones at 1293 and 1434 cm−1 are
attributed to CH2 and CH3 deformation vibration.34,38 The neg-
ative spectral contribution at 1658 cm−1—attributed to C═C

stretching vibration34—confirms that this component is related
to a saturated type of lipid.

It was recently reported that the acute activation of microglial
cells results in increased content of cellular total saturated fatty
acids, especially of palmitic acid (C16:0) and stearic acid
(C18:0).39 However, a precise evaluation of the spectral pattern
of the loading vector strongly suggests the presence of myristic
acid (C14:0), matching with high precision the band positions as

reported in Ref. 34. For instance, the four most intense bands of
myristic acids are reported at 1433, 1294, 1125, and 1062 cm−1,
while the same bands of both palmitic and stearic acids are all
shifted 5 to 12 cm−1 toward the higher wavenumber. As no
changes of myristic acid content in microglia are reported upon
activation,39 an increase in myristic acid might be explained by
the increased density of inflammatory cells compared to other
tissue regions.

As the lateral resolution of Raman spectroscopy in our
experiments is not able to identify the lipid droplets from
other cellular compartments, it is unclear whether the saturated
fatty acids are a product of myelin degradation that are stored in
the lipid droplets. Only the upregulation of saturated fatty acids
in activated microglia was addressed in Ref. 39; their subcellular
localization and a possible relationship to the presence of lipid
droplets were not studied. Furthermore, no reference reporting
an accumulation of saturated fatty acids inside the lipid droplet
of immune cells was found, except in cases where they are cul-
tured in media enriched with saturated lipids. The lipids of the
CNS contain a very high amount of polyunsaturated fatty acids,
particularly of arachidonic acid (C20:4), and docosahexaenoic
acid (C22:6).40 In fact, necrotic regions with presence of macro-
phages and foam cells in brain affected by glioblastoma
were studied by Raman spectroscopy and the spectral signature
of unsaturated fatty acids [i.e., oleic acid (C18:1)] was

Fig. 4 PCA: (a–e) maps of score values for all samples and (f) loading vector for the fifth component.
(g) Zoom-in of the box in the score map of sample #5 shown in (e); (h–j) CARS, TPEF, and merged
images of sample #5 in the same region shown in (g). Scale bar: 0.5 mm. * in (e) indicates the alginate
implant.
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detected.41 Studies made by Raman microspectroscopy on
macrophages in vitro indicated esterified unsaturated lipids as
a main component of the lipid droplets.42,43 Lipid droplets in
leucocytes were found to be rich in unsaturated moieties by
resonance Raman spectroscopy and provide a reservoir of
arachidonic acid, which is involved in the activation pathway
of immune cells.44 Therefore, the available bibliography does
not provide sufficient information to relate the overexpression
of saturated fatty acids inside the injured spinal cord with the
storage of myelin degradation products inside the lipid droplets
of foam cells. However, the comparison with CARS and TPEF
images provides further indication.

By inspecting in detail the spatial distribution of signals in
the inflammatory regions, it is possible to clearly see that the
score maps in fact mimic the pattern of TPEF more than the
distribution of lipid droplets as seen by CARS [compare
Figs. 4(g) with 4(h) and 4(i)]. This suggests a correlation
with the activation state of the immune cells. It was hypoth-
esized that palmitic and stearic acids may play a role in the
activation of a pathway that modulates the expression of
inflammatory cytokines.39 It is also known that myristic acid
has an important role in the cell lipid metabolism, by regulating
the production of polyunsaturated fatty acid (e.g., of docosahex-
aenoic acid).45 Moreover, recent findings suggest that myristic
acid may have a specific regulatory role because of its ability to
modify enzyme activities or protein functions through their
N-terminal myristoylation. In particular, myristic acid regulates
the activity of mammalian desaturases, which are enzymes
involved in the metabolism of lipids.46 Therefore, it is more
likely that the small amounts of saturated fatty acids identified
by PCA in foam cell-rich regions of spinal cord are not just
stored in the lipid droplets, but play an active role in the metabo-
lism of activated microglia/macrophages.

4 Conclusions
SCI triggers degenerative processes characterized by scarring,
demyelination, and inflammation. While demyelination and
scarring were already addressed elsewhere by Raman spectros-
copy,20,19 inflammation was so far neglected in spectroscopic
studies of SCI. Here we showed that: (i) an unspecific mapping
of the lipid distribution based on CH2 (and on sterol ring) vibra-
tion band intensity does not discern between preserved white
matter and inflammatory regions with myelin fragmentation
and presence of lipid-laden microglia/macrophages; (ii) inflam-
matory regions with lipid-laden microglia/macrophages can be
localized by addressing the distribution of esterified lipids (i.e.,
by mapping the intensity of carbonyl Raman band); (iii) these
inflammatory regions are enriched with saturated fatty acids,
which likely play a role in the lipid metabolism of activated
microglia/macrophages. In conclusion, Raman spectroscopy
specifically addresses the inflammation taking place in the nerv-
ous tissue after SCI, and the products of myelin degradation.
Therefore, Raman spectroscopy is confirmed to be a very useful
tool for characterization of degenerative events triggered by
injury of CNS.
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