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Abstract. We report the application of a hidden Markov model (HMM) on multifractal tissue optical properties
derived via the Born approximation-based inverse light scattering method for effective discrimination of precan-
cerous human cervical tissue sites from the normal ones. Two global fractal parameters, generalized Hurst expo-
nent and the corresponding singularity spectrum width, computed by multifractal detrended fluctuation analysis
(MFDFA), are used here as potential biomarkers. We develop a methodology that makes use of these multi-
fractal parameters by integrating with different statistical classifiers like the HMM and support vector machine
(SVM). It is shown that the MFDFA-HMM integrated model achieves significantly better discrimination between
normal and different grades of cancer as compared to the MFDFA-SVM integrated model. © 2017 Society of Photo-
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1 Introduction However, in a clinical situation, it is often required to classify

Disease diagnosis through optical methods is an area of consid-
erable research interest.! Optical tools are sensitive and are
hence potentially capable of discriminating different stages of
disease progression.'” However, tissue being a complex
medium, with several fluorophores, scatterers, and absorption
domains, makes it difficult for proper diagnosis through optical
means.! Hence, identifying reliable markers for accurately
depicting the tissue condition through noninvasive optical meth-
ods has received significant attention.! For this purpose, recent
approaches have focused on extracting intrinsic fluorescence’
and tissue multifractality, characterizing the morphological
changes by multifractal detrended fluctuation analysis
(MFDFA).? Other approaches make use of principal component
analysis* for identification of underlying spectral correlation and
other image processing tools like wavelets’ for pin pointing
parameters that faithfully capture the disease progression.
Clinical application of this approach, not only depends on
these biomarkers but also crucially depends on the validation
of the diagnosis outcome through a suitable diagnostic algo-
rithm, which can accurately classify the measured spectra
from an unknown tissue, using the stored database of spectra
of tissues of known histopathologic classification. This will sup-
plement and augment the histopathological approach, the cur-
rent industry gold standard. Over the last few decades, a
variety of diagnostic algorithms have been developed for optical
diagnosis of cancer.’ Classification schemes like artificial neural
network® and support vector machine (SVM)’ have been found
promising in binary classification, e.g., normal versus cancer.

*Address all correspondence to: Prasanta K. Panigrahi, E-mail: pprasanta@
iiserkol.ac.in
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the tissue site as normal and different grades of cancer. Hence,
there is strong interest on statistical classifiers to extract the
information content of the entire spectral data in order to get
the best diagnostic features and enhance accuracy in classifica-
tion of tissues into corresponding histopathologic categories.®
Total principal component regression developed by Tan
et al.® has classified various cancers, based on gene expression
profiles and provided the optimized results compared to other
methods for multiclass classifications. SVM has been deployed
for multiclass cancer classification with classwise optimized
gene.” Its usefulness for optical diagnosis is yet to be explored.
In recent times, hidden Markov models (HMMs) are being
widely used in biological sequence analysis as a robust
method.'® An HMM has been deployed to analyze hyperspectral
images and a new HMM-based spectral measure has been
referred to as the HMM information divergence in order to char-
acterize the spectral properties.!!

Here, we demonstrate the efficacy of MFDFA-HMM inte-
grated framework for optical diagnosis of cancer. More specifi-
cally, it is found that HMM on the multifractal light scattering
properties of the tissues shows remarkable efficiency in differ-
entiating normal and different stages of precancer. It is particu-
larly effective when applied on global fractal parameters like
generalized Hurst exponent and the corresponding singularity
spectrum width/strength of multifractality, characterizing the
global morphological conditions of the tissues for multiclass
cancer classification, as compared to the MFDFA-SVM inte-
grated framework under same application.
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2 Methods and Materials

2.1 Sample Preparation

Biopsied cervical precancer tissue slices (the histopathologically
characterized grade I, grade II, and grade III precancer tissue)
and normal tissues were collected from Ganesh Shankar
Vidyarthi Memorial (GSVM) Medical College, Kanpur, India
(age of patients between 35 and 60 years; ny, = 35, with
Ngradel = 14, Ngragert = 6, Ngradern = 95 and six biopsies from
the normal counterparts, 7,,ma = 6). The standardized histo-
logical preparation of the excised tissues involving fixation,
dehydration, embedding in wax, sectioning under a rotary
microtome with thickness ~5 um, and lateral dimension
~4 mm X 6 mm, is followed by performing subsequent dewax-
ing. The consent for the use of all the intact tissue (human cervix
with cancer and normal) samples in our study was obtained from
the Ethical Committee, GSVM Medical College and Hospital,
Kanpur, India. The sample preparation methods follow approved
guidelines in our study.

2.2 Experimental System

The spatial distribution of tissue refractive index (RI) was
recorded by a differential interference contrast (DIC) micro-
scope (Olympus IX-81, United States). At a magnification of
60x, these DIC images were recorded by a CCD camera
(ORCA-ERG, Hamamatsu, 1344 % 1024 pixel dimension
6.45 um). The elastic scattering spectra from the multiple sites
of the biopsied tissue sections were recorded by the angle
resolved spectral light scattering measurements (Fig. 1). In
brief, light emitted from a Xe-lamp (HPX-2000, Ocean
Optics, United States) was collimated by a combination of
lenses and illuminated the tissue sample at the center of a gonio-
metric arrangement (spot size ~1-mm-diameter). The collimated
scattered light from the sample was focused into a collecting
fiber probe coupled to a spectrometer (USB4000FL, Ocean
Optics) for wavelength resolved signal detection. The record-
ings of spectra were performed (360 to 800 nm) with a spectral
resolution of 2.05 nm, where the angular range was kept at
10 deg to 150 deg with an interval of 10 deg. For the inverse

fi L, i fa ’—LIZTj\'ue Sample
S

Fig. 1 Schematic of the spectral light scattering measurement. Xe
lamp: excitation source; A: aperture; L;: collimating lens; L,: illuminat-
ing lens; L3 and L,: collecting lenses; f4: focal length of collimating
lens Ly; f,: focal length of illuminating lens Ly; and f3 and f4: focal
lengths of collecting lenses L; and Ly, respectively.
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multifractal study, the spectra were recorded at backscattering
angle 8 = 150 deg (Fig. 3).

2.3 Background Analysis

In the first step, the elastic scattering spectra data were processed
through Fourier domain preprocessing via the Born approxima-
tion, followed by the multifractal analysis. For analyzing the
dataset, 6 normal, 14 grade-I, 6 grade-II, and 9 grade-III samples
were taken.

2.3.1 Light scattering-based inverse analysis in Born
approximation

At first, we extract the fractal parameters from the spatial varia-
tion of RI, as manifested through corresponding light scattering
data.'> We have followed the inverse analysis strategy'? for
quantification of multifractal signature from the scattered
light signal through MFDFA, before applying an HMM on
them. The normalized RI fluctuations of a weakly fluctuating

~ n(r)=no

scattering medium are given by An(r) R

where ny and

r are the average RI of the medium and location within the vol-
ume, respectively. The fluctuation part An(r) is responsible for
phase distortion and scattering. It is known that the elastic scat-
tering field for scalar excitation can be related to An(r) in
first-order Born approximation via Fourier transform.'? For con-
tinuous random media, such as tissues, the expression for scat-
tered intensity is given by

18) ~ Ko / n(eP o] )

where A is the wavelength; k = 2z/4; 0 is the scattering angle;
n(r) is the spatial inhomogeneity distribution of index; and ¢ =
noon is the strength of fluctuation index, where the amplitude of
fluctuating index is én. The scattering vector f has the modulus
B = 2k sin(6/2), where f is related to the spatial frequency v
via # = 2av. For a medium exhibiting self-similarity in index
fluctuations, the information on multifractality can be extracted
from the scattering signal as follows:

n (p) ~ / k2\/1(B = 2x)e B3 p. (2)

The parameter 7/ (p) exhibits the index inhomogeneity dis-
tribution with spatial scale p = |r — #/|, where p is the distance
between any two points in the medium. It represents the ran-
domness of the medium in statistical sense and embodies the
essential multifractal features of index fluctuations in complex
systems, such as tissues. This is subsequently analyzed using
MFDFA' to yield the multifractal tissue optical properties.

2.3.2 Multifractal detrended fluctuation analysis

MFDA is an effective tool for quantitative estimation of the gen-
eralized Hurst exponents. In MFDFA, one first generates a pro-
file function Y (i) (spatial series of length N, i = 1, ..., N) from
the one-dimensional spatial index fluctuations. Here, length of
the series N = 256 X 256 pixels. Subsequently, the profile is di-
vided into N, = int(N/s) nonoverlapping segments b of equal
segment length s. The segment length s varies from 16 to 128.
The local trend of the series [y, ()] is determined for each seg-
ment b by least square polynomial fitting and then subtracted
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from the segmented profiles to yield detrended fluctuations. The
resulting variance of the detrended fluctuation is determined for
each segment as follows:

F5.5) =13 (V6= s+ il (D ®
i=1

The moment (g) dependent fluctuation function can be
obtained by taking the average over all the segments:

F(s) = {ylvzﬁ {Fz(b,s)r};, 4)

S b=1

where g may vary from negative to positive values with fraction
or integer values. Since length N of the series is often not an
integer multiple of variable segment length s, in order to take
into account all the data points, the procedure was performed
twice on the series, starting from either end of the series.'
The scaling behavior can be obtained by analyzing the variations
of F,(s) versus s for each value g, assuming the general scaling
function as follows:

F,(s) ~s"9). &)

The relation between the generalized Hurst exponent A(q)
and the multifractal scaling exponent 7(g) can be demonstrated
as follows:

7(q) = qh(q) - 1. (6)

The Hurst exponent (H) is defined as h(g = 2) and the val-
ues H > 0.5, H=0.5, and H < 0.5 correspond to long range
correlation, uncorrelated random fluctuations, and anticorrelated
behavior, respectively.'! The Hurst exponent /(g) and the scal-
ing exponent 7(g), along with the singularity spectrum f(a)
completely, characterize any nonstationary multifractal fluc-
tuation series. Here, f(a) is related to 7(g) via a Legendre trans-
formation:

a=" f(a) = qa-r(q). ™)

dq’
where o 1is the singularity strength and the width
(Aa = |a; — a|) [considered at f(a) = 0] of f(a) is a quanti-
tative measure of multifractality.'®

2.4 Data Analysis

The obtained two global fractal parameters, generalized Hurst
exponent and the corresponding singularity spectrum width,
were subjected to (a) SVM-based multiclass classification
and (b) HMM-based multiclass classification. For analyzing
the dataset, 6 normal, 14 grade-I, 6 grade-II, and 9 grade-III
samples were taken.

2.41 Support vector machine

SVMs are powerful statistical classifiers under the supervised
learning scheme. The central idea behind SVM operation is
to separate classes with a surface that maximizes margin
between them by avoiding overfitting to form an optimal sepa-
rating hyperplane (OSH). Hence, by following structural risk
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minimization (SRM) of statistical learning makes prediction
on a function f(x) as f(x) = >N, wik(x,x;) +wy, where
k(x,x;) is the kernel function defined on a basis function,
{w;} is the corresponding model weights, and wy is the bias
weight.

The training data points lie far away from the OSH, does not
participate in the specification and hence receives zero weight.
Data point that lies close to decision boundary receives nonzero
weights. These training data points are “support vectors.”'*!> If
we remove these points, it will change the boundary location.
Unlike relevance vector machine, there are restrictions while
choosing of kernels in SVM. An appropriate selection of kernel
function is an important aspect as it defines the accuracy level of
SVM-based operation while determining training data classifi-
cation. The kernel function will produce optimum results in
classification as long as it obeys the Mercer’s theorem.'®!?
Figure 2 displays the simplified workflow of SVM-based multi-
class classification on extracted multifractal parameters from
tissue samples.

2.4.2 Hidden Markov model

HMM'C is a statistical Markov model with hidden states and is
also the simplest dynamic Bayesian network. An HMM is
closely related with mixture models, which are statistically in-
dependent. An HMM can be efficiently employed for a time
series data, where actual parameters are unknown and only
observational information are known. From this series of obser-
vations, the probabilities of parameters giving such observations
and the transmission probabilities can be found by the Baum—
Welch algorithm.!” The basic principle of an HMM can be
described as follows. For sg,...,s, states as input to the
model, the s, ;’th state can be predicted by the traditional
Markov model, where given the present input, the future is in-
dependent of the past:
P(sis1lses -+ 80) = p(sipalse). @®)
If g,’th observation can be made on the basis of ¢,_;’th
observation, it is a first-order assumption, which generally is
used for Bayesian modeling. Using the Markov assumption,
we also can write it as follows:

plai...a.) = [ railgi-r)- )
i=1

According to the Bayes’ formula:

p(xi/q:)p(q;) .

10
p(x;) {10

p(qi/xi) =

In a more general way, the above Eq. (8) can be rewritten as
follows:

P(xi:::x';)p(QI,...,qn)
p(‘h....,‘h) nod . (11)

p(xl,...,xn)

The measure of probability can be achieved by likelihood
parameter L, which is proportional to the probability:
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Fig. 2 SVM-based multiclass classification on extracted multifractal parameters from tissue samples.

QI,...,Qn QI,...,Qn o xl,...,xn
p oL =p|——)r(q. . )
X1,....%n X1,....%n q1....49n
(12)

In the case of an HMM, the model is prepared with the train-
ing data ® = {x,A,B} and a sequence of N states is
S = {s,... sy}. Here, 7 is defined as the prior probability, A
is the transition probability, and B is the emission probability.
The probability of a state sequence Q = {q,, ..., q,} obtained
from an HMM with parameters ® can be expressed as a product
of the transition probabilities:

0 N-1
p <§) = g, H g1 = 7q1%,.9,%.95 - Lay_y.qy-
n=1
(13)

For an observational sequence X = {x|,...,xy}, a (hidden)
state sequence Q = {q,,...,qy} can be determined from an
HMM with parameter ©. Hence, the likelihood of X along
the path Q takes the form:

X N X,
p<§,®) = I |p(q—,®> =bg 3 bgyny - Dgyxy  (14)
n=1 n

It can be expressed as the product of the emission probabil-
ities computed along the considered path.

With the likelihood of an observed sequence X =
{x1,...,xy} and the parameter ® defined by an HMM, the
probability p can be expanded as follows:

o))

Using the Baum—Welch algorithm, the hidden parameters in
an HMM are found. This algorithm utilizes the expectation
maximization (EM) algorithm for finding the maximum
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likelihood estimation of the parameters of an HMM, given a
set of observed feature vectors.

As we mentioned earlier, hidden Markov chain can be rep-
resented as 6 = (A,B,x). Here, the stochastic transition
matrix A = {a;;} = p(X, = j|X,.; = i), where X, is the
discrete variable. The emission probability B = [b;(y,)] =
p(Y, =y,/X,=j), where Y, is the observational sequence.
The EM algorithm defines a local maximum for 6* =
argmax[p(Y/X)]. After defining the initial condition, the
Baum-Welch algorithm follows the forward and backward pro-
cedure to find the proper estimation of the predicted results.

In the case of forward procedure, let the probability of view-
ing yi,...,y; at state i in time ¢ is o;(¢t) = p(Y; =y,,..
Y, =yl|X,=1i,0).

Under recursion procedure,
aj(t+1) = bj(y1) 2K, ai(t)ay;.

Similarly, let the probability of viewing y,,,...,yr at state
i in tme ¢ is Bi(t) = p(Yey1 = yer1. Yr = yr|X, = i.0).
Under recursion procedure, fS;(T)=1 and p;(r) =

B+ 1)aibi(yi)-

In the final step, according to the Bayes’ theorem, the prob-
ability of the observed sequence Y and the parameters 6 in state
i at time ¢ given as y;(z) = p(X, = i|Y,0) :%

The probability of being in state i and j at times ¢ and ¢ + 1,
respectively, given the observed sequence Y and parameters 6:

O

a;(1) = z;b;(y;) and

8l‘j(t) = p(Xt = l.,XH_] :J|Y, 9)

_ a;(t)a;pi(t+1)b;(yi41)
2o a(T)
Hence, 0 can be updated at expected frequency spent in state

i at time [ as 7} = y;(I). The expected number of transitions
from state i to state j compared to the expected total number

T-1
.. .. it
of transitions away from state i is a}; = M
/ Zz:l ]/,'(t)
If b} (v;) is the expected number of times, the output obser-
vations have been equal to v; while in state i over the expected
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r

total number of times in state i, then bf(v;) = 2“'71‘7’7(;([)
=171

Here, the indicator function [, _, = 1 exists only for y, = v;.

These steps are iterated until a desired level of convergence is
achieved.

In this paper, an HMM is applied on the known multifractal
fractal parameters, which leads to a significant improvement on
the prediction accuracy. For experimentation, we first train the
multifractal parameters in an HMM for each of the categories.
Prior probabilities are first selected as a random function. A and
B are modeled as Gaussian densities, with mean O and variance
1. Subsequently, a representative data is trained on the model
iteratively to fit and modify the model using EM algorithm.
The model is optimized using Lagrange multipliers. We use for-
ward and backward algorithms to compute a set of sufficient
statistics for our EM step tractably. Once the model is suffi-
ciently trained for a given sequence of data we calculate the like-
lihood of sequence for each category, i.e., as P(X/0;), when the
sum of the joint likelihoods of the sequence over all possible
state sequences Q, allowed by the model for each category.
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The maximum likelihood gives the prediction for the sequence
data.

The proposed HMM-based model on light scattering derived
from multifractal tissue optical properties has been demon-
strated in Fig. 3. The HMM-based data analysis steps for normal
and different cancerous grades have been shown here in detail
for the ease of understanding.

3 Results and Discussion

The DIC images of different pathological grades have been pre-
sented in Fig. 4 for comparisons. The histopathologically char-
acterized tissue samples were provided by the pathologists of
GSVM Medical College and Hospital, Kanpur, where cancer
stages were defined by the pathologists.

The results of the inverse analysis on the light scattering
spectra recorded (using the spectral light scattering measure-
ment system in Fig. 1) from a grade-1 dysplastic cervical tissue
(corresponding to Fig. 1) are displayed in Fig. 5. The large varia-
tion of the slopes of log F,(s) versus log s [Fig. 5(c)] is the
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10 pm

Normal

()

Grade

Grade I

Fig. 4 The representative DIC images of (a) healthy (normal) and
(b—d) different stages (histopathologically characterized grade |, I,
Ill) of precancer tissues, respectively.

evidence of strong multifractality. The derived h(q) spectrum
and the singularity spectrum f(a) [Figs. 5(d) and 5(e)] demon-
strate the strong multifractality in the spatial variations of tissue
refractive indices. The parameter 5/ (p), obtained by Fourier pre-
processing, contains submicron level spatial index fluctuations
information [as evident from Fig. 5(b)]. The observed small-
scale fluctuations of h(q) [Fig. 5(d)] and the resulting width

of f(a) [Fig. 5(e)] possibly originate from the microarchitecture
of the fibrous network of connective tissue. To summarize
Fourier preprocessing of light scattering in Born approximation
and its subsequent analysis through MFDFA documents, there
are small spectral variations as signature of subtle or hidden
changes in the refractive indices spatial distribution via multi-
fractal parameters.

After MFDFA analysis, the observed trends are h(g = 2) =
0.63 £0.02, 0.56£0.05, 0.48+0.03, 041+0.04, and
Aa = 0.86 £ 0.01, 0.90 £0.03, 0.96 +0.04, 0.99 £0.01 for
normal and different grades of cancer, respectively. Here, it
can be observed that there exists an overlapping of multifractal
parameters like Hurst exponent and singularity spectrum width
among normal and different grade of precancerous tissues.
Hence, the supervised classifiers like SVM and HMM have
been applied here for multiclass classification purpose.

Our initial dataset consists of 35 samples. We have used
Monte Carlo cross-validation, where we randomly split the data-
set into training and testing dataset. This process has been
repeated 100 times. The size of training and testing dataset
varies for each split; we just ensured that a minimum two num-
ber of samples have been included in both training and testing
dataset for each split. For each such split, the model has been fit
to the training data, and predictive accuracy has been assessed
using just the validation data (testing data). Then, the results of
the testing data have been averaged over the splits. The advan-
tage of this method is that the proportion of the training/valida-
tion split is not dependent on the number of iterations, and the
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Journal of Biomedical Optics

Fig. 5 Results of the inverse analysis performed on the light scattering spectra recorded from a grade-1
precancer human cervical tissue slice (corresponding to Fig. 1). (a) The recorded light scattering intensity
[I(v)versusv,v =2 sin(§), o = 150 deg, 1 = 360 to 740 nm, shown here]. (b) The representative index
fluctuations with spatial scale p [/ (p)] extracted via Fourier domain preprocessing [using Eq. (2)] on /(v)
(shown following polynomial detrending). (c)-(e) Results of the MFDFA inverse analysis on the
detrended fluctuations #/(p). (c) The variation of log Fq(s) versus log s for different moments q
(=—4 to +4 shown here). Multifractality in #/(p) is evident from significant variations in the slopes
with varying q. (d) The MFDFA-derived moment dependence of generalized Hurst exponent h(q).
(e) The resulting singularity spectrum f(a).
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predictive accuracy is more or less independent of the samples
used for training dataset. We additionally used nine unknown
samples taken at different time than the dataset and the predic-
tion done by our model has been compared by manual verifi-
cation. Results of the unknown samples also have been
averaged and presented in the results. The above process has
been repeated for SVM and HMM.

The data in Table 1 depicts the mean and variance
(mean = variance) for each MFDA parameter of each grade
for the entire dataset. The same dataset has been used for
model generation in SVM and HMM.

There are nine unknown samples, which are considered as
test samples for SVM and HMM classification purpose.

SVM creates an optimum manifold barrier with radial basis
function kernel between healthy and different grades of cancer
depending on MFDFA parameters. Figure 6 displays the predic-
tion analysis carried out by training data in SVM.

From Fig. 6, it is clearly visible that SVM works very well in
binary classification, i.e., between normal and grade III with
98.5% and 100% accuracy, respectively. While trying out
SVM classification for multiclass classification, the MFDFA-
SVM integrated framework performs poorly by degrading the
overall performance of the system with 57.14% and 55% accu-
racy, respectively. This error in prediction has occurred due to
wrongly predicting normal tissues as grade I tissues (1.5%),
grade I as normal (14.29%), and grade II tissues (28.57%) as
well as grade II tissues as normal (10%) and grade I tis-
sues (35%).

Table 1 Summary of the multifractal tissue optical properties derived
from light scattering spectra.

Normal Grade-| Grade-ll Grade-lll
Hurst 0.634+0.02 0.56+0.05 0.48+0.03 0.41+0.04
exponent
[h(g =2)]
Singularity 0.86+0.01 0.90+0.03 0.96+0.04 0.99+0.01
spectrum
width (Aa)
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Fig. 6 SVM-based tissue classification based on light scattering-
derived multifractal tissue optical properties. The horizontal surfaces
of these figures have been sectioned into 4 x 4 rectangles. The accu-
rate and inaccurate prediction of each stage (normal, grade I, grade I,
and grade lll) have been represented by diagonal and off diagonal
rectangles, respectively.
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Fig. 7 HMM-based tissue classification based on light scattering —
derived multifractal tissue optical properties. The horizontal surfaces
of these figures have been sectioned into 4 x 4 rectangles. The accu-
rate and inaccurate prediction of each stage (normal, grade |, grade I,
and grade Ill) have been represented by diagonal and off diagonal
rectangles, respectively.

An HMM creates abstract Markov models for the classifica-
tion purpose on multifractal parameters. Figure 7 displays the
prediction analysis carried out by training data in an HMM.

As can be seen from the graph, the parameters clearly show
distinction between normal and different grades of precancer
with singularity spectrum width (Aa) and Hurst exponent
h(q). The normal and grade III tissues were correctly predicted.
However, there is error while predicting grade I and II tissues
(correct prediction rates are 85.45% and 78.57%, respectively).
This error in prediction is also limited to wrongly predicting
grade I tissues as grade II tissues (14.54%) as well as grade
II tissues as grade I tissues (21.43%).

The results demonstrate that binary classification between
normal and cancerous tissues (grade III) is very good both in
SVM and HMM. Meanwhile, in multiclass classification
cases, when precancerous grades (grade I, grade II) are to be
classified along with normal and precancerous tissues (grade
III), abstract parameters achieved using an HMM that performs
better than the SVM. The presence of noise in the obtained sig-
nal damages the SVM performance as SVM clearly classifies
based on the kernel formed after considering all the multifractal
parameters. While in the case of HMM, the Markov model finds
abstract parameters by controlling the actual multifractal param-
eters and produces a prediction based on the derived abstract
parameters. As a consequence, an HMM avoids the noise
added to the signal and able to produce better multiclass clas-
sification results than SVM.

In our current manuscript, we proceeded with Fourier
domain preprocessing as our main focus was on global behavior
analysis of time series through MFDFA-HMM and MFDFA-
SVM integrated model classifications in early-stage cancer
detection. It is known to us that wavelet domain analysis is
more appreciable than Fourier domain (short-time Fourier trans-
form) analysis in the case of local behavior analysis of time
series.'® In wavelet domain preprocessing, the performance of
the SVM model can perform better than an HMM model as
SVM has better generalization due to the principle of SRM than
an HMM for system abnormality detection.'” A comparative
study between MFDFA-SVM and MFDFA-HMM integrated
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model for local behavior analysis of time series through wavelet
domain preprocessing in early-stage cancer diagnosis will be a
part of our future study.

4 Conclusions

We have explored an integrated framework of light scattering-
derived multifractal tissue optical properties (generalized Hurst
exponent and width of singularity spectrum) along with a robust
HMM for multiclass classification of different precancerous
grades of human uterine cervix. The results clearly demonstrate
that the use of HMM on the multifractal properties leads to sig-
nificantly improved classification as compared to MFDFA-SVM
based integrated model for multiclass classification. These
MFDFA-HMM based classification results show considerable
promise by exploring multifractal tissue optical properties as
a biomarker for precancer detection. We are currently expanding
our investigations toward in-vivo deployment of this integrated
approach for precancer detection using tissue light scattering
spectra. In general, the use of this MFDFA-HMM integrated
model on elastic scattering spectroscopic data may lead to a
diagnostic modality for the detection of other types of cancer.
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