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Abstract. Ramification of blood circulation is relevant in a number of physiological and pathological conditions.
The oxygen exchange occurs largely in the capillary bed, and the cancer progression is closely linked to the
angiogenesis around the tumor mass. Optical microscopy has made impressive improvements in in vivo imaging
and dynamic studies based on correlation analysis of time stacks of images. Here, we develop and test
advanced methods that allow mapping the flow fields in branched vessel networks at the resolution of 10 to
20 μm. The methods, based on the application of spatiotemporal image correlation spectroscopy and its exten-
sion to cross-correlation analysis, are applied here to the case of early stage embryos of zebrafish. © 2017 Society of

Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.22.10.106008]
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1 Introduction
Flow regulation of physiological activity is a wide field of life
sciences.1 Both in human beings and artificial environments,
three-dimensional (3-D) structures such as cellular aggregates
leading to organoids or bacterial colonies are often immersed
in an aqueous fluid in motion and subjected to hydrodynamic
forces.2 The progression of a wide number of diseases is affected
directly by blood circulation. An important example is cancer3

and its metastases. Some diseases produce an impaired blood
supply to organs.4,5 These different fields of research share a
common feature. The fluid circulation presents a pulsatile, occa-
sionally irregular, flow with ramifications in evolution, and it
requires high spatial and time resolution to be studied.

The focus of the field of angiogenesis research has, in recent
years, shifted toward the analysis of network formation mech-
anisms, also connected to tissue engineering,6 as well as the
study of vessel maturation and remodeling processes.7 This has
led to the discovery of vascular guidance and networking mol-
ecules as well as the identification of vessel maturation-regulat-
ing molecules, such as the angiopoietins and the platelet-derived
growth factors.8 In this field, medical research often exploits
small animal models such as zebrafish embryos9 and juvenile
transparent fishes10,11 for pilot in vivo studies. In addition, the
advances of microfluidics are greatly influencing several fields
of microbiology, providing new tools to investigate processes
developing under flow, such as bacterial biofilm formation.12

Our aim is, therefore, to devise methods to map quantita-
tively the flow field at the branching point along a vessel net-
work. We describe and test an algorithm able to quantify in a
user-independent way the dominant flow in a branched network

of sprouting vessels. To show real-field applications, we apply
these algorithms on the zebrafish embryo model by following
the motion of red blood cells in the embryo’s blood (contrary
to hemolymph, which is the fluid circulating in arthropods). Our
method is based on the use of spatiotemporal image correlation
spectroscopy (STICS) analysis coupled to single plane illumi-
nation microscopy (SPIM).13 This strategy allows us to reach
flow field mapping with the spatial resolution of a few microm-
eters and to single out different periodic components, as
typically found in hemodynamics.9,14 A powerful alternative
technique, Doppler optical coherence tomography, has been
applied15,16 to map the flow field in branched microfluidic devi-
ces in 3-D (10- × 10- × 10-μm3 resolution). These works, how-
ever, were focused on the study of turbulence in large channels
(mm in size) and at larger flow speeds (fewmm∕s) than typically
found in hemodynamics. Cross-correlation analysis was already
applied on a dual or multispot level for the detailed analysis
of the flow in straight microfluidic capillaries and in straight
vessels in vivo.9 STICS analysis was applied to wide field
images of blood flow in vessels as a validation for intrasurgical
applications.17 We extend here the original STICS algorithm18 to
the cross correlation over different fields of view chosen along
the flow direction to increase the dynamic range for the meas-
urement of the flow speed and use a multicomponent analysis of
the correlation maps that allows us to exploit the amplitude of
the correlation map to evaluate the flow fractionation at the
branching points. The present analysis is limited here to two-
dimensional (2-D) flows that can be analyzed simply by follow-
ing the displacement of the cross-correlation map with the lag
time. However, our STICS-based approach can be extended to
a 3-D reconstruction of the flow field by following the cross-
correlation amplitude decay with the lag time.

*Address all correspondence to: Laura Sironi, E-mail: laura.sironi@unimib.it;
Giuseppe Chirico, E-mail: Giuseppe.chirico@unimib.it 1083-3668/2017/$25.00 © 2017 SPIE

Journal of Biomedical Optics 106008-1 October 2017 • Vol. 22(10)

Journal of Biomedical Optics 22(10), 106008 (October 2017)

http://dx.doi.org/10.1117/1.JBO.22.10.106008
http://dx.doi.org/10.1117/1.JBO.22.10.106008
http://dx.doi.org/10.1117/1.JBO.22.10.106008
http://dx.doi.org/10.1117/1.JBO.22.10.106008
http://dx.doi.org/10.1117/1.JBO.22.10.106008
http://dx.doi.org/10.1117/1.JBO.22.10.106008
mailto:laura.sironi@unimib.it
mailto:laura.sironi@unimib.it
mailto:laura.sironi@unimib.it
mailto:Giuseppe.chirico@unimib.it


2 Experimental Section

2.1 Single Plane Illumination Microscopy Setup

The SPIM setup18,14 employs an argon−krypton laser (Melles
Griot), expanded 1∶4 and focused into the back aperture of
an illumination objective (Olympus, UMPLFLN 10XW, 10×,
NA ¼ 0.3, working distance ¼ 3.5 mm). The fluorescence
emission is selected by a bandpass filter and is detected
by an EMCCD detector (Cascade II, Photometrics)
through an Olympus MPLFLN objective (20×, NA ¼ 0.5,
working distance ¼ 3.5 mm; see Fig. 1 for details). The maxi-
mum acquisition rate was 4 ms∕frame on reduced regions
of 40 × 250 μm2.

2.2 Zebrafish Embryos

The measurements were done on embryos of zebrafish (3 days
postfertilization, d.p.f.). We used the transgenic line mitfaw2∕w2;
roya9∕a9; Tgðkdrl∶EGFPÞS843; Tg-ðgata1∶dsRedÞsd2, carrying
green-labeled epithelium (EGFP) and red-labeled (dsRed) red
blood cells.19 The zebrafish embryos were anesthetized20 with
tricaine [40 mg∕L tricaine(ethyl 3-aminobenzene methansulfo-
nate, Sigma–Aldrich Corporation, St. Louis, Missouri)], posi-
tioned in a 2-mm diameter fluorinated ethylene propylene
tube (FT2X3, Adtech Polymer Engineering, Frampton Mansell,
UK), and then immersed in a water cell.14,21

2.3 Spatiotemporal Image Correlation Spectroscopy
Images Analysis

The STICS images were computed on a time stack ofM images
S ¼ fIjgj¼0;: : : ;M taken at M times spaced by δt ranging typi-
cally from 13 to 19 ms (corresponding to 74 to 52 frames∕s
of the EMCCD, the fastest rates compatible with the chosen
field of view). We take the SPIM plane as the x − y plane.
We assume that the flow velocity lies in this plane and is
~v ¼ ðvx; vyÞ. Each image has a size of X × Y pixels. The
image autocorrelation function was computed on the fluctuation
matrices obtained by subtracting pixel by pixel the average
signal hIkðx; yÞik ¼

P
M
k¼1 Ikðx; yÞ∕M to the content of each

image of the stack, δIjðx; yÞ ¼ Ijðx; yÞ − hIkðx; yÞik, by the
FFT algorithm as follows:

EQ-TARGET;temp:intralink-;e001;326;586Gðξ; η; kδtÞ ¼
XM−k

j¼0

FFT−1½FFTðδIjÞFFT�ðδIjþkÞ�∕ðM − kÞ:

(1)

Each image of the time stack was padded with zeros up to
double its size before performing the FFT.

On each correlation image, corresponding to the lag time τ,
we automatically selected the position ðξmax; ηmaxÞ of the maxi-
mum by fitting the image to a 2-D Gaussian profile. The ampli-
tude of the STICS function was derived from the amplitude
of the Gaussian fit function, subtracted for the possible
background.

Even though the morphological images are available, we do
not want to presume any a priori knowledge of the flow direc-
tion. We have then simply computed the STICS image on rec-
tangular regions of interest (ROIs) aligned with the axes of the
image as it is acquired. To evaluate the components of the flow
velocity in the SPIM plane, we follow the position of the STICS
image with the lag time over at least 5 to 10 lag time points, up to
a lag time τfit. We have checked that the condition to recover the
STICS amplitude is that the ROI size is at least SROI ≅ 2vxyτfit.
A flow of the order 400 μm∕s and τfit ≅ 40 ms corresponds to a
size of 16 μm, or at least 20 pixels. This is our spatial limitation
in the reconstruction of the field flow.

3 Results and Discussion

3.1 Spatiotemporal Image Correlation Spectroscopy
Allows to Follow the Flow Along Curved
Vessels

We want to devise methods to map the blood flow in tiny
branched capillaries. The flow should be characterized in terms
of direction and amplitude of the velocity, and we will need to
evaluate the flow branching ratio at the ramifications along the
network. The rationale of the methods that we are describing
is to autocorrelate and cross correlate in space and time stacks
of images acquired through a wide field SPIM. In general, we
could also map the velocity field by tracking, and then averaging,
many trajectories of individual red blood cells. This is not always
feasible, for example, when the vessel morphology cannot already
be singled out from the images (initial angiogenesis) or the heart
pulsation affects the flow, such as in arteries. STICS offers the
advantage of directly providing an average flow map in which
the heart pulsation effect is averaged out. With STICS, we obtain
from a time stack of images a series of autocorrelation maps

Fig. 1 (a) Photo and (b) sketch of the SPIM setup. The source is an
argon laser (514-nm emission line). A beam expander (1, focal
lengths 25 and 50 mm) expands the incoming laser beam. A variable
rectangular slit (2) creates a thin vertical aperture in the optical path.
The cylindrical lens (3) is positioned at the focal length (50 mm) from
the slit. The beam reducer (4, focal lengths 50 and 25 mm) reduces
the incoming laser beam to fill the objective back aperture. The exci-
tation objective (5) is an Olympus, water dipping, 10×, 0.3 NA. (6) The
positioning system (for sample rotation and 3-D translation) and
the sample holder. The detection objective (7) is an Olympus, water
dipping, 20×, 0.5 NA. The tube lens (8) has focal length 150 mm.
The detector (9) is an EMCCD detector (Cascade II—photometrics).
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[Eq. (1)],Gðξ; η; τÞ, function of the lag time τ. For a uniform drift,
the map assumes the shape of a 2-D quasi-Gaussian13,14 function
whose maximum occurs at the position ~rmax ¼ ðξmax; ηmaxÞ,
measured with respect to the origin of the autocorrelation map
and it is a function of τ. Here, we want to exploit the possibility
of following both the position and amplitude of the autocorrela-
tion map maximum as a measure of the flow velocity and relative
amount of cells taking either of the arms of a branching point.
We will then extend this concept to cross correlation of different
ROIs in the field of view.

We first assess the problem to reconstruct the flow along a
curved vessel independent of possible ramifications. We assume
that flow is occurring mainly in the SPIM plane and analyze the
time stacks of images according to the STICS algorithm on an
ROI (rectangular in shape) chosen in such a way to encompass a
small (40 μm) tract of the vessel. The particular anatomy of the
zebrafish embryo justifies our assumption. We took care to ori-
entate the embryo in such a way to image in the same light sheet
(<12 μm) both major vessels of the embryo. It is known (see, for
example, the repository of image22) from the anatomy of the
embryo that most of the branching occurs in the same sagittal
plane.

We first evaluate, at different positions along the putative
vessel axis of the STICS image at increasing lag times and
fix the lag time at the maximum value, τfit, for which the maxi-
mum ~rmax ¼ ðξmax; ηmaxÞ of the STICS image lies within the
STICS image by at least 5 to 6 pixels. The average velocity
of the cells is obtained as ~v ¼ ð−ξmax∕τfit;−ηmax∕τfitÞ.14,23,24
The speed is computed, by assuming nonconstrained motion,

as dmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2max þ η2max

p
.

We need to find a compromise between the finesse of the
spatial reconstruction of the flow, the computation time, and
the spatial resolution of the STICS image. The latter depends
on the brightness of the tracers. In our hands, for red blood
cells in living embryos, the minimum displacement of the
STICS maximum for which the corresponding velocity uncer-
tainty is smaller than 15% is j~rmaxj ≅ 4 pixels (that is 3.2 μm in
the sample plane). The lower the signal/noise is, the larger the
minimum value of j~rmaxj is and the coarser the reconstructed
flow map is.

Once the ROI size and the fitting lag time have been chosen,
the algorithm computes sequentially a set of STICS maps,
updating at each step the investigation of ROI with a rigid

Fig. 2 Evaluation of the red blood cells flow in zebrafish embryo (3 dpf) vessels based on STICS maps
from ROIs of ð14 × 14Þ pixels (pixel size ¼ 2.9 μm). All the flow analyses have been done with propa-
gation factor α ¼ 0.5. (a) A wide field picture (256 × 256 pixels ¼ 742 × 742 μm2) of blood circulation in
the abdomen of the embryo. The flow field is reported in four linear tracts of the vessel network as thin
arrows whose length is proportional to the speed. At two branching points, the dominant and marginal
flow components are reported as green and red filled arrows, respectively. (b) The STICS map for the
vessel branching point marked by a dotted white box in (a), at lag time τ ¼ 311 ms. (c and d) Zoomed
images on one intersomitic vessel in which the trajectories computed from nine different starting points
have been reported together with the average flow curve (see text). (e) The flow speed along the recon-
structed average flow (green) line and the adjacent (blue) line reported in (c).
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translation along the vector ~T ¼ αðξmax; ηmaxÞ. The choice of
small propagation factor α < 1 allows oversampling of the
flow map. We typically adopt α ¼ 0.5. A flow line can be
built by assigning each flow velocity vector to the center of
the corresponding ROI and by representing it with the Quiver
python class.25 As can be seen from Fig. 2(a), we can follow
the blood flow on a wide field of view (750 × 750 μm2) with
a good resolution, ≅5 to 10 μm [Figs. 2(c) and 2(d)].

When approaching a branch in the vessel network, the STICS
image assumes a double component character [see Fig. 2(b)].
At each step along the path (i.e., on each ROI), we evaluate
the relative amplitude of the two peaks and displace the ROI
along the direction that corresponds to the most relevant com-
ponent (according to the maximum of each component detected
in the STICS image). In this way, starting from two different
points along the vessel network, we are able to evaluate the
flow velocity even at the branching points [Fig. 2(a)] and follow
it along the individual arms [Figs. 2(c) and 2(d)]. We observed a
dependence of the resulting trajectory on the evolution param-
eter α. We have found that for values α ≅ 0.5 of the evolution
parameter, the flow trajectories closely follow the vessel
axis, which can be measured from the morphological image
[Fig. 2(a)]. There is still a dependence on the position of the
starting point (the center of the first ROI of the sequence)
along the putative cross section of the vessel, which is shown
in Figs. 2(c) and 2(d) (different discontinuous colored lines).

However, the trajectories coalesce on a common path that we
have selected by averaging the points that correspond to the
position of the individual flow lines on each cross section of
the vessel (at steps of 20 μm). The resulting line, reported as
a thick semitransparent green line in Figs. 2(b) and 2(c), can
be considered the common flow path in the selected vessel.
There is no appreciable dependence of the amplitude of the flow
speed on the starting point of the trajectory, which can be judged
from the plot of the flow speed along two flow lines as shown in
Fig. 2(e). This is to be expected since, here, we are tracking red
blood cells that are approximately the size of the capillary
diameter.

3.2 Spatiotemporal Image Correlation Spectroscopy
Allows Estimation of Flow Branching Ratios at
the Vessel Ramifications

The application of the STICS algorithm on a ROI that encom-
passes a ramification of the vessel network, such as in the black
rectangle of Fig. 3(a), results in correlation images, in which two
components can be singled out [Fig. 3(b)]. These components
can be ascribed to the cells that take either of the two branches.
The rapidity of their displacement from the center of the corre-

lation image, ~rð1Þmax ¼ ½ξð1Þmax; η
ð1Þ
max� and ~rð2Þmax ¼ ½ξð2Þmax; η

ð2Þ
max�, as a

function of the lag times is the measure of the flow direction
and the flow speed for cells flowing in each arm. The direction

Fig. 3 Analysis of the flow ramification at branching points. (a) Morphological image taken on a zebrafish
embryo (3 dpf) obtained as the standard deviation projection of the time stack of images used for
the STICS analysis. (b) STICSmaps computed on the ROI selected in (a) (black rectangle) for increasing
lag time, from 164 to 348 ms from left to right and from top to bottom (flow speed coded by a “jet” LUT;
morphological images superimposed in light blue). (c) Linear fit of position of the maximum of the
STICS images as a function of the lag time. Open (blue) symbols refer to the prevalent component
in each STICS image. Open (green) symbols refer to the marginal component (visible for lag
times τ ≥ 170 ms). The linear fit to the data (dashed lines, same color code) gives velocities
v1 ¼ 55� 1.5 μm∕s and v2 ¼ 69� 3 μm∕s for the prevalent and the marginal components, respectively.
(d) The Gaussian fitting of the STICS map (lag time ¼ 348 ms) together with the profile plots along
the ξ and η axes.
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of the velocity vector follows very well the morphology of the
vessel ramification, which can be judged from the superposition
of the correlation images with the morphological images
[Fig. 3(b)]. To this purpose, the correlation images shown in
Fig. 3(b) have been inverted by a central symmetry with respect
to the center of the correlation space.

In the correlation maps [Fig. 3(b)], one peak was found to
always be larger in magnitude irrespective of the lag time.
Moreover, the standard deviation projection image (each
pixel contains the standard deviation value found through the
time stack) showed very similar signals on the two arms,
which indicates that the emission of the individual red blood
cells passing through the two arms is very similar. We assume,
therefore, that the maximum amplitude of the two correlation
components is proportional to the number of red blood cells
flowing in one or the other ramification of the vessel branching.
For example, as shown in Fig. 3(d), the brightest component of
the STICS map corresponds to the red blood cells flowing
upward, amounting to 66%� 1% of the overall amplitude.
The marginal component represents cells flowing from left to
right, amounting to 34%� 1% of the overall amplitude. The
marginal component can be singled out with a reasonable
signal/noise ratio (10%) only for lag times τ ≥ 170 ms. Two
values of the flow speed can be computed from the linear fit
of the displacements of the maxima of each component as
a function of the lag time, as shown in Fig. 3(c): we measure

v1 ¼ 55� 1.5 μm∕s and v2 ¼ 69� 3 μm∕s for the prevalent
and the marginal components, respectively. We find then that
the marginal component is slightly faster than the prevalent
one. This corresponds quite well to the observation that the left–
right vessel arm is visibly larger [see Fig. 3(a)] than the bottom-
up arm and the fact that the vessels are approximately the size
of the red blood cells diameter. It must be noticed that the
algorithm for the computation of the flow velocity used here
is customized to the case of right-angle crossing between vessels
as in Fig. 3(a) (box). Since the flow is constrained to occur along
the vessel axis, the displacement of the maximum of the auto-
correlation map may, in general, not be along a line passing
through the center of the map. In this case, we should compute
the flow speed along the vessel axis through the incremental
algorithm j~rmaxðτ þ δτÞ − ~rmaxðτÞj ¼ j~vjδτ.

3.3 Spatiotemporal Cross-Correlation Analysis
Enhance Mapping Features

The possibility of spatially mapping the flow relies on the choice
of a small ROI on which we apply the spatiotemporal correlation
algorithm. The space resolution of the reconstructed flow
depends on the size of the ROI (half of its linear size ¼ 0.5 ×
SROI). However, a second key parameter for obtaining high-
precision flow speed estimations is the max tracer speed (K)
inside the investigation ROI. If we assume that at least five

Fig. 4 Cross-correlation spatiotemporal analysis. (a) The time average of the stack of images. The light
and dark gray rectangular boxes are the original and translated ROI, respectively. The white arrow indi-
cates the translation vector. (b) Three autocorrelation images computed on the original ROI for lag times
τ ¼ 18.2, 36.4, and 54.6 ms. The white arrow indicates in each STICS image the displacement vector
~rmax ¼ ðξmax; ηmaxÞ. (c) The spatiotemporal cross-correlation maps between the original and translated
ROIs for absolute lag times τ ¼ 18.2, 54.6, and 91 ms. The light green arrow indicates in each cross-
correlation image the relative displacement vector ~r 0max ¼ ðξ 0max; η 0

maxÞ. (d) The plot of the displacement

dmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2max þ η2max

p
as a function of the absolute lag time τ (blue color) and d 0

max ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðξ 0maxÞ2 þ ðη 0

maxÞ2
p

as a function of the reduced lag time, τ − τ0 (green color, τ0 ¼ 18 ms). The dashed line is the best linear
fit to the data and corresponds to the speed v ¼ 380� 9 μm∕s.
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lag time points are needed to linearly fit the relation between
the displacement j~rmaxj and the lag time, K can be estimated
from the ROI size (SROI) and the CCD frame rate (fps) as
K ¼ SROI × fps∕5. In the experiments shown in Figs. 1 and
2, fps ¼ 74 frames∕s and SROI ¼ 16 μm and we compute
K ≅ 240 μm∕s. If we had larger speed values, we should
increase the ROI size, losing then in spatial resolution of the
flow mapping. Moreover, if the flow is not aligned with the
ROI axes, we would need to increase the ROI size in both
the ξ and η directions. This would increase substantially the
computation time.

To solve these issues, we propose to adopt an approach
consisting of two-stage analysis:

1. perform a first STICS on an ROI with a small lag time
to evaluate the flow direction and

2. rigidly translate the ROI of half the size of the original
ROI in the flow direction detected at step 1 and per-
form a spatiotemporal cross correlation between the
original and the translated ROI [see Fig. 4(a)].

In this way, we can increase the dynamic range of the speeds
that can be detected. A flow speed almost 4 times larger than in
Fig. 3 can be measured on the vessel reported in Fig. 4(a) with
3% accuracy at 20-μm size resolution (SROI ¼ 20 μm). At the
same time, we are able to keep the computational costs at
the same level as the original autocorrelation algorithm. The
details of the algorithm can be gained by comparing Fig. 4(b)
(STICS correlation) with Fig. 4(c) (STICCS, cross correlation).
We evaluate the flow velocity on the cross-correlation images
by translating the correlation frame of reference ðξ; ηÞ at the
position ðξ0; η0Þ at which the cross-correlation peak is first
detected and the lag time τ axis to the corresponding lag time,
τ0 [see Fig. 4(c)]. The two components of the flow velocity can
then be evaluated as the inverse of slope of ξ − ξ0 and η − η0 [the
corresponding vector is reported as a white arrow in Fig. 4(c)]
as a function of τ − τ0. This estimate is in very close agreement
with the one obtained on the autocorrelation images, which can
be judged from Fig. 4(d) (open and filled symbols).

We notice that the analysis presented here is limited to 2-D
flows. We could extend it to 3-D flows by following, in addition
to the position of the correlation map in the correlation space,
the decay with the lag time of its amplitude. The main limitation
in this case could be the computation time, more than the acquis-
ition time. In fact, we would work out the information about the
out-of-plane motion from the amplitude decay of the cross cor-
relation computed on the time stack of images of a single light
sheet. This possibility is currently under investigation in our
laboratory.

4 Conclusions
We have devised and tested correlation and cross-correlation
algorithms, specifically designed for SPIM, which allow the
analysis of blood flow in branched vessels. This involves the
computation of the spatiotemporal correlation (STICS) and
cross-correlation (STICCS) images and the analysis of the
resulting maps in terms of multiple components. From the rel-
ative amplitudes of different components of the STICS map, we
assign the prevalent flow direction at branching points and we
are able to follow the flow at the ramification, also measuring the
flow speed. The application of cross-correlation spatiotemporal
methods on two different ROIs on the stacks of images allows

the enhancement of the dynamic range of the flow speed mea-
surements and mapping the flow in extended vessel networks
with 5 to 10 μm resolution. An example of the resulting flow
map reconstruction on two consecutive branching points can
be seen in Fig. 2(a). These algorithms could be a great help
in analyzing a huge amount of data collected in vivo in the
field of developmental biology or in vitro in the setup of vascu-
larized microincubators for tissue engineering.
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