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Abstract. The emergence of fluorescently labeled therapeutic antibodies has given rise to molecular probes for
image-guided surgery. However, the extraneous interstitial presence of an unbound and nonspecifically accu-
mulated probe gives rise to false-positive detection of tumor tissue and margins. Thus, the concept of tumor-cell
activation of smart probes provides a potentially superior mechanism of delineating tumor margins as well as
small tumor deposits. The combination of molecular targeting with intracellular activation circumvents the pres-
ence of extracellular, nonspecific signals of targeted probe accumulation. Here, we present a demonstration of
the clinical antibodies cetuximab (cet, anti-EGFR mAb) and trastuzumab (trast, anti-HER-2 mAb) conjugated to
Alexa Fluor molecules and IRDye QC-1 quencher optimized at the ratio of 1∶2∶6 to provide the greatest degree
of proteolytic fluorescence activation, synonymous with intracellular lysosomal degradation. The cet-AF-Q-C1
conjugate (1∶2∶6) provides up to 9.8-fold proteolytic fluorescence activation. By preparing a spectrally distinct,
irrelevant sham IgG-AF-QC-1 conjugate, a dual-activatable probe approach is shown to enhance the specificity
of imaging within an orthotopic AsPC-1 pancreatic cancer xenograft model. The dual-activatable approach war-
rants expedited clinical translation to improve the specificity of image-guided surgery by spectrally decomposing
specific from nonspecific probe accumulation, binding, and internalization. © 2017 Society of Photo-Optical Instrumentation

Engineers (SPIE) [DOI: 10.1117/1.JBO.22.12.121607]
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1 Introduction
Since the seminal report of the in-human safety and tumor-
specificity of fluorescent antibodies in work described by
Rosenthal et al., leveraging FDA-approved therapeutic antibod-
ies as fluorescent clinical molecular probes for image-guided
surgery is becoming an ever-growing reality.1–4 Rosenthal et al.
fabricated a fluorescent conjugate of IRDye 800CW with the
human-murine chimeric monoclonal antibody cetuximab for
the in vivo clinical imaging of epidermal growth factor receptor
(EGFR) in head and neck cancer patients.1 This development in
the clinical imaging of cancer using targeted, optically active
biologics has been warranted by the long-standing unmet clini-
cal need for assistance in surgical navigation.4 Prior attempts to
address this critical need were initially approached in 1948 by
administering nonspecific fluorescein dye to image perfused
brain tumors in patients.5 More recently, far-red and near-infra-
red dyes, namely methylene blue (MB) and indocyanine green
(ICG), exhibiting superior suitability for imaging deep tissue
have proven to be valuable fluorescence contrast agents for
the mapping of sentinel lymph nodes, monitoring blood perfu-
sion, and imaging vascular and lymphatic pathologies to assist
surgical procedures.6,7 In the context of oncology, limited
reports have demonstrated the detection of hepatic and breast

malignancies using intravenously administered ICG, leveraging
delayed dye interstitial clearance from tumors to provide
selectivity.8,9 However, the weak selectivity and absence of dis-
crete tumor specificity of fluorophores, such as ICG and MB,
render them unreliable for accurate tumor detection and
image-guided surgery. The necessity for increased tumor speci-
ficity has since lead to strategies that leverage the tumor tissue’s
inherent capacity to synthesize an accumulated amount of fluo-
rescent protoporphyrin IX following the exogenous administra-
tion of 5-aminolevulinic acid.10 In June 2017, 5-aminolevulinic
acid received FDA approval as Gleolan® for image-guided sur-
gery of glioma and a number of clinical trials also leveraging the
approach to guide surgical resection are ongoging.4 The
described strategies, although powerful in their own right, pro-
vide weak specificity when imaging cancer and can provide
heterogeneous intratumoral signals, requiring secondary
approaches to improve their specificity and homogeneity of
labeling.11,12 The earliest demonstration of leveraging fluores-
cent antibodies for imaging human disease tissue was reported
by Folli et al. who intravenously administered fluorescent anti-
carcinoembryonic antigen antibodies to patients with primary
colorectal carcinoma and imaged the tissue ex vivo following
surgical resection.13 The first demonstration of in-human
molecular imaging in patients was reported in 2011 by van
Dam et al. who visualized ovarian cancer metastases, of
which 90% to 95% overexpress the folate receptor-α, using a
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folate–fluorescein conjugate to guide radical cytoreductive
surgery.14 Following the first in-human demonstration of
image-guided surgery using cetuximab–IRDye 800CW in
2015,1 a phase I trial was initiated for the use of the conjugate
for image-guided surgery of head and neck cancer,
(NCT01987375). A second trial imaging EGFR using cetuxi-
mab–IRDye 800CW is also pending. Four phase I, clinical trials
using an IRDye 800CW conjugate of the antivascular endo-
thelial growth factor receptor antibody have also been initiated
to image familial adenomatous polyposis (NCT01691391),
breast cancer (NCT01508572), rectal cancer (NCT01972373),
and premalignant esophageal lesions (NCT02129933).4 An
additional pending clinical trial will also leverage an antipros-
tate-specific membrane antigen antibody to image prostate
cancer (NCT02048150). Of particular relevance to this study,
a current clinical trial is performing intraoperative imaging of
pancreatic cancer using a cetuximab–IRDye 800CW conjugate
(NCT02736578), further motivating our demonstration here of a
dual-activateable probe approach in an orthotopic model of pan-
creatic ductal adenocarcinoma.

Building on the wealth of antibody-based molecular probes
for image-guided surgery, the concept of proteolytic probe
activation is an elegant means to enhance the specificity of
protein-based molecular probes. We have previously reported
an activatable photosensitizer-cetuximab conjugate whereby
proteolytic intracellular degradation of the antibody conjugate

resulted in tumor-specific activation of imaging and photodynamic
therapy.15–18 These antibody probes have been demonstrated to
be effective therapeutic agents with the potential to serve a dual
diagnostic and therapeutic function.15,19–21 Furthermore, they
can be leveraged to mop up the surgical bed from residual, unde-
tectable microscopic disease.15,20 Static quenching of fluoro-
phores when confined in proximity to one another on an
antibody can exist through self-quenching or by the introduction
of a Förster resonance energy transfer- and contact-based dark
quencher.22–26 In this approach, activation is dependent on the
spatial separation of statically quenched fluorophores upon lyso-
somal degradation. In this study, we present a flexible platform
optimized for the activation of far-red and near-infrared antibody
fluorophore conjugates using IRDye QC-1 as a broad-spectrum
quencher to enable the synthesis of molecular-targeted, activat-
able fluorescent probes over a spectrum of fluorophore colors,
given that sufficient spectral overlap exists between the fluoro-
phore’s emission and the quencher’s absorption profile.

As described in the methods section, varying ratios of Alexa
Fluor 700 (AF700) and IRDye QC-1 (QC-1) were conjugated to
cetuximab to obtain a final dye/antibody ratio of 8 [Fig. 1(a)] to
provide conjugates with increasing degrees of the dark quencher
QC-1 [Fig. 1(b)]. This dye ratio was chosen to avoid over label-
ing that compromises the biological activity and specificity of
the antibody. The conjugates were then subject to a simulation
of intracellular lysosomal proteolysis using trypsin in vitro
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Fig. 1 (a) Schematic representation of the panel of cetuximab (cet) conjugated to varying ratios of Alexa
Fluor 700 (AF) and IRDye QC-1 (QC-1) amounting to a total of eight chromophores per antibody.
(b) Normalized UV–visible absorption spectra of the varied ratio cetuximab conjugates with increasing
degrees of QC-1 incorporation. (c) Proteolytic activation of the panel of varying fluorophore-quencher
ratio cetuximab conjugates by 24 h of trypsin digestion revealed that 1∶2∶6 ratio of cetuximab:Alexa
Fluor 700:IRDye QC-1 exhibited the highest degree of activation with a 9.8-fold increase in fluorescence
following probe digestion. (d) Raw fluorescence emission spectra of digested, activated cetuximab:Alexa
Fluor 700 with and without IRDye QC-1 demonstrate that the increased specificity provided by the
quencher results in only 29.4% compromise in brightness. (e) Activation was also demonstrated in
Alexa Fluor 660 cetuximab conjugates showing an improvement in fold activation with QC-1 incorpora-
tion at a ratio of 1∶2∶6. Data points are mean� S:D:, statistical significance was calculated using a one-
way ANOVA analysis with Tukey post-test comparison in (c) and using a two-tailed t -test in (e).
Cetuximab is represented by the refined structure of an intact IgG2a monoclonal antibody (Protein
Data Bank; PDB ID: 1IGT)27 and the three-dimensional (3-D) structure was projected using Jmol: an
open-source Java viewer for chemical structures in 3-D.28
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to assess the degree of activation the probes exhibited. With
increasing QC-1 composition, the degree of cetuximab activa-
tion, reaching a maximum of ∼10-fold activation with the
optimal 1∶2∶6 ratio of cet:AF:QC-1 [Fig. 1(c)]. Further incor-
poration of QC-1 at a 1∶1∶7 ratio of cet:AF:QC-1 resulted in an
inferior degree of activation compared to 1∶2∶6. The enhanced
specificity provided by the QC-1 in the cet-AF700 conjugates
also results in a 29.4% compromise in signal, as shown by the
raw fluorescence emission spectra [Fig. 1(d)], which is not
anticipated to be problematic in the clinic, as probe specificity
rather than fluorophore brightness remains the major unmet
clinical need.1 Enhanced activation is also demonstrated by
the incorporation of the QC-1 in cetuximab AF660 conjugates
[Fig. 1(e)], exemplifying the flexibility of this approach to syn-
thesize activatable conjugates using other fluorophores.

Fundamental principles of the static quenching and intracel-
lular activation approach are shown schematically [Fig. 2(a)]
along with basic spectroscopic data showing the overlap of
the QC-1 absorption spectrum with the fluorescence emission
of the exemplary far-red AF dye pre- and postactivation for
the optimal 1∶2∶6 ratio [Fig. 2(b)].

To further test that the optical ratio identified for cetuximab-
based probes holds for other antibodies, we compared the effi-
ciency of self-quenching (1∶8∶0; no QC-1 dark quencher) with
the 1∶2∶6 ratio for trastuzumab [Fig. 3(a)] and an IgG isotype
control [Fig. 3(b)]. The enhanced activation potential using the
QC-1 dark quencher at the optimal ratio held for all three of the

antibody conjugates [Fig. 3(c)]. This finding suggests that this
approach can be applied to a wide range of fluorescent dyes to
potentially construct a panel of multicolor probes (i.e., any dye
that overlaps with the broad QC-1 absorption spectrum, which
extends from ∼500 to 900 nm)24 for efficient quenching of vis-
ible, far-red, and near-infrared dyes).

We then performed a preliminary xenograft study in ortho-
topic pancreatic cancer (AsPC-1) to demonstrate tumor-specific
activation of dual-activatable tracers (Fig. 4). Fluorescence
image-guided surgery was simulated by acquiring hyperspectral
near-infrared fluorescence images of dual-activatable cetuxi-
mab-AF660-QC-1 (1∶2∶6) and IgG-AF700-QC-1 (1∶2∶6)
sham probes coinjected intravenously into mice bearing the
orthotopic AsPC-1 pancreatic cancer xenografts. The tumor
margin is clearly visualized by the cetuximab-based activatable
probe whereas the nonspecific IgG-activatable probe enabled
visualization of nonspecific accumulation with significant back-
ground in the pancreas and surrounding organs [Figs. 4(a)–4(j)].
Figure 4(j) is a heat map (using the “fire” look up table, LUT, in
ImageJ) image for 0 to 5 that quantitatively shows specific bind-
ing where cet is above the IgG nonspecific level, thus delineat-
ing the tumor margins more accurately, as compared to the
activateable cet alone in Fig. 4(i). The qualitative margin delin-
eation presented here is preliminary and would require histo-
logical analysis for validation. The heat map was generated
by subtraction of the image intensity histogram mode of each
raw image (cet and IgG) to set the mean background to zero.
Each image is then normalized (divided) by its overall mean sig-
nal intensity. For each pixel, the ratio cet/IgG – 1 was calculated,
such that 0 (1 − 1) indicates no specific binding and values
greater than 0 highlight specific binding, and this is presented
as the heat map image in Fig. 4(j). The ratio used for image
analysis of the dual-activateable probe technique was adapted
from a previously reported study.29

Future work will exploit this new activatable dual tracer
approach to perform quantitative imaging of cellular uptake
and molecular target levels in the tumor, extending a new power-
ful approach to perform dual tracer molecular fluorescence im-
aging that enables quantitative imaging of receptor binding and
cellular uptake based on pharmacokinetic modeling.30,31

Finally, an exciting area of future development will able to
integrate this multicolor, activatable imaging probe platform
with theranostic agents that in addition to fluorescence also pro-
duce cytotoxic-reactive species (e.g., singlet oxygen) to perform
therapy15,20 (i.e., tumor-targeted, activatable photoimmunother-
apy, and taPIT). This development will have potential to enable
surgeons to selectively “mop up” residual microscopic disease
left behind in the surgical bed.

2 Materials and Methods

2.1 Antibody Chromophore Conjugates

Cetuximab (Erbitux®; Ely Lily), trastuzumab (Herceptin®;
Genentech), and human IgG isotype control (Pierce) were pre-
pared to 2 mg∕ml concentrations in bicarbonate solution (0.1 M,
pH 8.0). Antibody solutions in 500 μl aliquots were added to
Alexa Fluor® 700 or 660 NHS esters (10 mg∕ml in anhydrous
DMSO; Invitrogen) premixed with or without IRDye® QC-1
NHS ester (10 mg∕ml in anhydrous DMSO; LiCor) at a molar
excess of antibody that provides eight dye molecules per anti-
body, given that Alexa Fluor® NHS ester reactions were found to
be 53.7% efficient and IRDye® QC-1 NHS ester reactions were
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Fig. 2 (a) Schematic representation of the targeted intracellular pro-
teolysis of optimal cetuximab–Alexa Fluor 700–IRdye QC-1 (1∶2∶6)
leading to the spatial separation of the fluorophore from the quencher
and subsequent fluorescence activation (the structure of the propri-
etary Alexa Fluor 700 is depicted by the structure of the related
dye Alexa Fluor 647). (b) Fluorescence emission spectra of
quenched, intact cet:AF:QC-1 (1∶2∶6) and the activated, proteolyzed
cet:AF:QC-1 (1∶2∶6) with respect to the absorption spectrum of the
IRDye QC-1 quencher.
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found to be 63.1% efficient at 4 h room temperature conjugation
reactions. To provide antibody:Alexa Fluor®: IRDye® QC-1
ratios of 1∶8∶0, 1∶4∶4, 1∶2∶6, 1∶1∶7, and 1∶0∶8, antibodies
were reacted with Alexa Fluor® NHS esters and IRDye® QC-
1 NHS esters at respective ratios of 1∶14.9∶0, 1∶7.4∶6.3,
1∶3.7∶9.5, 1∶1.9∶11.1, and 1∶0∶12.7 for 4 h at room temper-
ature. Following conjugation, the antibody chromophore conju-
gates were separated from unconjugated dye by size exclusion
chromatography using Thermo Fisher Scientific Alexa Fluor
antibody conjugate separation resin equilibrated with 1× PBS.
Dye concentrations were measured using UV–visible spectropho-
tometry dilutions in DMSO (AF660 ε668 nm¼132;000M−1 cm−1;
AF700 ε702 nm ¼ 205;000 M−1 cm−1; and QC-1ε788 nm ¼
98;000 M−1 cm−1). Antibody concentrations were calculated

using the Pierce™ BCA Protein Assay Kit (Thermo Fisher
Scientific) and standard curves of respective antibody solutions
in PBS. Antibody–chromophore ratios were determined by the
molar ratio of antibody to chromophores following purification.

2.2 Trypsin Simulation of Intracellular Proteolysis

Antibody–chromophore conjugates were incubated in the pres-
ence of 1% trypsin for 24 h at 37°C in triplicate. Fluorescence
spectra of the Alexa Fluor dye were measured with and without
trypsinization to determine the degree of quenching and activa-
tion. Changes in fluorescence activation were measured using
integrated emission spectra of the preoteolytically cleaved
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antibody normalized to the integrated emission spectra of the
intact antibody chromophore conjugate.

2.3 Orthotopic Pancreatic Cancer In Vivo
Simulation of Image-Guided Surgery

A left abdominal flank incision was made in male 6- to 8-week
old Swiss nude mice to exteriorize the pancreas. The body of the
pancreas was injected with AsPC-1 cancer cells (1 × 106 cells in
50 μl of 50% matrigel) orthotopically implanted. The incision
was sutured and the tumors were left to develop for 14 days.
A cocktail of cet:AF660:QC-1- and IgG:AF700:QC-1-activat-
able probes (10mg∕kg each) was injected into the tail vein
24 h prior to imaging. The abdominal flank was then reopened
and the mice were imaged hyperspectrally using the Maestro
whole mouse imaging system (Perkin Elmer) before and after
removal of the pancreas. Baseline spectra of free AF660 and
AF700 in PBS were also measured using the Maestro.
The mouse and tumor images were hyperspectrally unmixed
using the defined basis spectra at 1 nm resolution and were used
to generate unmixed composite images of specific (cet:AF660:
QC-1) and nonspecific (IgG:AF700:QC-1) probe binding.
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