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Abstract. An approach for impulse noise detection and removal in color images based on Moran’s I (MI) statistic
is proposed. The proposed method consists of detection and removal components and is called Moran’s I vector
median filter (MIVMF). The detection module is able to determine if a pixel is noise or noise-free. If it is a noise
pixel, the vector median filter (VMF) will be used to remove the noise. This detection capability meets the
so-called “switching” mechanism, which only selects noisy pixels for denoising. Hence, this proposed filter
will expedite the processing time with the reduced number of vector calculations in the VMF due to this detection
function. This type of detection is achieved with MI index and the indication of one-dimensional Laplacian
kernels. We compare the proposed MIVMF with other well-developed vector-type median filters in the literature.
Our experimental results show that the proposed filter is not only faster in the filtering process but also efficient in
removing random impulse noise with different noise levels in color images. The MIVMF demonstrates a prom-
ising denoising result based on the criteria of peak signal-to-noise ratio and structural similarity index metric. With
the visualization of processed images, the MIVMF can avoid image blurring, preserve the edge details, and
achieve superior noise reduction. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported
License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including
its DOI. [DOI: 10.1117/1.JEI.26.2.023023]
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1 Introduction
The major sources of noise corrupted in most digital images
are from the process of image acquisition, quantization, and
transmission. As one common example, when an image is
transmitted through some wireless mobile networks, it
may be ruined with noisy signals from atmospheric disturb-
ances, such as thunder and lightning in the environment.1

Thus, an image may be degraded such that it will not
have the same original quality. The consequence of degraded
images can create potential problems for further image
processing and analysis. For example, a clustering algorithm
for segmenting an image usually measures the relationships
in the pixel space by categorizing the pixels into different
classes.2 Therefore, the existence of noise pixels will create
different attributes for pixels that originally belonged to
the same cluster. This may generate different clustering out-
comes. Our goal is to remove noise in color images and
restore the image, which, as a result, will be as similar as
possible or identical to the original image.

In general, algorithms for removing noise in images can
be divided into two methods: one for grayscale images and
one for color images. Many state-of-the-art noise removal
algorithms have been proposed in the past decades for
the grayscale image.3–7 As digital imaging technology has
advanced, the necessity for color image processing has been
in great demand. Although grayscale image processing is

still needed in specific fields, such as medical imaging on
x-ray computed tomography,8 the wide usage of color and
multichannel images is very common in many areas of im-
aging applications. In this study, we consider color images
our primary focus in developing the denoising filter.

Prior to building the algorithm for denoising filters, one of
the most important prerequisites is to take on the noise mod-
els for color images. Image noise occurs in a wide variety of
forms.1,5 It is very common for noise to contaminate the pix-
els of images taken by the sensor. During the process of digi-
tization and transmission, noise can be introduced into each
pixel wherein one or more bit-errors will be embedded in the
pixels of images. The Gaussian noise model and impulse
noise model are two widely used models for characterizing
the noise information for denoising filters in digital image
processing. The Gaussian model is convenient for the
simulation of noise to design and test the efficiency of a
denoising algorithm. If the noise causes pixel data loss or
saturation, the impulse noise model, also called salt-and-pep-
per noise, will be suitable for the noise characterization.
Gaussian noise is used as a model of dark noise and often
as a crude model of shot noise, which is governed by the
Poisson distribution. The main sources of Gaussian noise
in digital images arise during acquisition, for example, sen-
sor noise caused by factors such as poor illumination, high
temperature, and transmission noise. There are also different
noises caused by devices, such as dark noise, which is due to
the thermal fluctuations of stationary charge carriers. Dark
noise frequently occurs in image sensors, such as charge-
coupled devices. Noise degrades image quality and causes
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difficulty in further processing. Hence, an image denoising
algorithm requires an image noise model for improving the
signal-to-noise ratio in digital images. In this work, we
assume that the impulse noise model is the major type of
noise to be detected and removed. Impulse noise randomly
and sparsely corrupts pixels to two intensity levels, relative
high or relative low, compared with its neighboring pixels.

There exist several different formulations for the impulse
noise model, and each formulation has its own characteristic
in generating how the density level of noise will be assigned
and how three color channels will be corrupted with a certain
level of probability.9–11 Let us assume that the density level
of noise probability is δ and k value is the color channel
index for red, blue, and green. For convenience, we assume
that the red, green, and blue channels are assigned 1, 2, and
3, respectively, with an 8-bit pixel image for the following
discussion. If δ is assigned 0.2, then 20% of the entire pixels
of a given image is noise. The first impulse noise model,
which is uncorrelated impulsive noise,10 is formulated as
follows:

EQ-TARGET;temp:intralink-;e001;326;752xk ¼
8<
:

rkSAP with probability δ
or

ok with probability 1 − δ
where k ¼ 1; 2; or 3;

(1)

where rkSAP stands for the random vector that represents the
impulse noise corruption with rkSAP ∈ ½0� or rkSAP ∈ ½255�
(with equal probability) and ok represents the original
color vectors. The subscript SAP represents the salt-and-pep-
per noise. Those two vectors result in the final outcomes xk

of the corrupted image with impulse noise restricted to 0 or
255. This model is called a “salt-and-pepper” impulse noise
type. This model is limited to only one channel corruption at
a time for all three channels. Hence, we use lower case sym-
bols rkSAP, o

k, and xk to represent this model.
The second impulse noise model is based on the correla-

tion of impulse noise distribution among the color channels.
This model can be expressed as follows:

EQ-TARGET;temp:intralink-;e002;63;520X ¼

8>>>>>><
>>>>>>:

½o1; o2; o3�with probability 1 − δ

½r1SAP; o2; o3�with probability δ1 for channel 1 ðunder δÞ
½o1; r2SAP; o3�with probability δ2 for channel 2 ðunder δÞ
½o1; o2; r3SAP�with probability δ3 for channel 3 ðunder δÞ

½r1SAP; r2SAP; r3SAP�with probability δ4 for all channels ðunder δÞ

; (2)

where X represents a pixel vector and riSAP and oi are similarly
defined as in Eq. (1). δ1, δ2, and δ3 are the respective probabil-
ities of each channel corruption (these parameters were set up
as δ1 ¼ δ2 ¼ δ3 ¼ δ4 ¼ 0.25 in Ref. 10). For example, if we
assume that the noise level is 0.1 (i.e., 10% noise density),
the δ value is 0.1. Each individual channel δi will be given
0.25 probabilities under the overall 10% probability.
Consequently, the combination of single channel corruptions
from δ1, δ2, and δ3 and all channel corruption will add up to
0.1 probability in total. The problem with this model is that
it limits the noise corruption either on a single channel only
or three channels simultaneously but does not permit two chan-
nels for the noise corruption simultaneously. This may not be
realistic in practical applications.

The noise model that we used in our research is not lim-
ited to one channel for noise corruption. The noise signal
used is also not limited to two relatively high and low

values (i.e., values close to 0 or 255). Our model assumes
random-valued noise corruption on the multiple channels
simultaneously with a randomized noise level from 0 to
255. We assume that all channels are corrupted with
the probability δ. The impulse noise model we used is
shown in Eq. (3), where the subscript rv in rirv stands for
the random value. This model allows any combination of
channels (can be 1, 2, or 3) to be corrupted with impulse
noises. This is a more general impulse noise model com-
pared with noise models 1 and 2. As a result, the compari-
son in terms of visual perception of noise corruption level is
more severe than noise model 2. Please note that noise
model 1 as shown in Fig. 1(b) looks more noisy than
our model in Fig. 1(d) due to the difference in the three-
channel noise (i.e., color) and salt-and-pepper. The latter
makes dark and white noises more prominent compared
with the color.

Fig. 1 A comparison of different impulse noise models: (a) an original image, (b) corrupted with the
noise model 1, (c) corrupted with the noise model 2, and (d) corrupted with the noise model 3. The
probability δ is set to 10% for all noise models. All testing simulations in this paper will be based on
noise model 3.
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EQ-TARGET;temp:intralink-;e003;63;752X ¼

8><
>:

½o1; o2; o3�with probability 1 − δ
or

½r1rv; r2rv; r3rv�with probability δ
: (3)

There are many state-of-the-art developments and publica-
tions in the literature for impulse noise removal in color
images. Similar to grayscale methods, many of them
have their own advantages and limitations in terms of per-
formance issues, such as edge-preserving capability and
efficiency on noise removal. One of the important functions
that has been used in the grayscale methods for the median
filter (MF) is called “switching based”-MFs.4–6 This type of
MFs selectively suppresses noise pixels, leaving those
uncorrupted pixels intact. It can preserve the edge details
and avoid blurring the image. This mechanism is also
used in some versions of the vector median filter (VMF)
for color images.10,12,13 Our proposed idea on Moran’s I
(MI) (statistic) and four one-dimensional (1-D) Laplacian
kernels is designed to improve the performance on the
capability of noise detection, which will then be used for
noise removal function. Our proposed filter is also a type
of filter with a switching mechanism. MI is one of the oldest
indicators of spatial autocorrelation frequently used in
social sciences, such as geography and sociology. Based
on our research in the literature, two groups of researchers
have proposed the MI statistic in their work. Chen et al.14

used the MI statistic for measuring the image quality of
reconstructed images. Chuang and Huang15 assume that
the byte of a pixel in an image can be divided into two
parts, signal and noise; the noise occupies the lower bits
of a byte. The MI and join-count statistics then examine
the noise bits to filter them out. In our study, the MI statistic
is used as a measure in a defined window for detecting noise
pixels. The motivation for this study is to measure the
strength of spatial autocorrelation of pixels in the local
neighborhood of the image. MI indicates the different spa-
tial structures of the smooth and rough surfaces, which pro-
vide an index for impulse noise determination and preserve
original noise-free pixels. In Sec. 3, we will introduce MI
and its application on impulse noise detection in detail.

The rest of this paper is organized as follows. The related
work in Sec. 2 will briefly review research in impulse noise
removal of color images and present our initial thought and
motivation for improving contemporary filtering methods for
color images. A comparison of the classical MF and VMF is
given in this section based on our experimental results. In
Sec. 3, the proposed algorithm with spatial autocorrelation

associated with MI and Laplacian kernels is provided.
Section 4 describes the simulation results, and Sec. 5 gives
the concluding remarks and future work.

2 Related Work

2.1 Classical Median Filter and Vector Median Filter
The classical MF is an efficient filtering algorithm for remov-
ing impulse noise in gray-level, color, and multichannel
images. It is one of the most common nonlinear type filters.
Due to its distinctive property in the impulse response of the
MF, this filter has been widely used in suppressing impulsive
noise.16 Many authors have analyzed the statistical properties
of the filter, and some modifications and generalizations of
the MF have been introduced.16 This MF is a simple and effi-
cient algorithm that replaces the center pixel with the median
value of the corresponding neighborhood window, such as
a size of 3 × 3. A general MF is formulated as

EQ-TARGET;temp:intralink-;e004;326;555f̌ðx; yÞ ¼ medffðxþ s; yþ tÞjðs; tÞ ∈ WÞ
f−bm∕2c ≤ s ≤ þbm∕2c;−bm∕2c ≤ t ≤ þbm∕2cg;

(4)

where f̌ is the filtered image, ðx; yÞ is the location of a pixel,
W is the neighborhood window in the image, and the s and
t values are determined by the window size m and the floor
function (i.e., bm∕2c) for integer truncation.

Even though this filtering algorithm was originally devel-
oped for the grayscale image, it can intuitively be used in
color images with a component-wise extension. The so-
called marginal standard median filter (MSMF)8,17,18 deals
with each red, green, and blue channel separately, by calcu-
lating the median value of each channel within a neighbor-
hood window. The restored image is then constructed by
combining all RGB channels together, as shown in Fig. 2.
Consequently, the filtered pixel will have the median
value for each channel as a component in the pixel vector.
This filter considers the median value in each separated
channel without considering the correlation that may exist
between color channels. As a result, the restored image
may have color distortion (artifacts).8,18

Astola et al.16 proposed a VMF for impulse noise removal
for color images in 1990. The VMF is based on ordering the
vectors within the neighborhood window by calculating the
cumulative pairwise distance and taking the vector corre-
sponding to the lowest-ranked distance as the vector median
value for the output. The VMF is formulated as in Eq. (5)

Fig. 2 The MSMF applies to each component separately. A pixel consists of RGB components. The
median value of each component is calculated, and the output is a new vector with the median
value in each of the RGB components.
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where the norm L can be implemented as either L2 (i.e.,
Euclidean distance) or other different norms

EQ-TARGET;temp:intralink-;e005;63;730XVMF ¼ arg min
Xj∈W

Xm
k¼1

kXj − XkkL; (5)

where Xj (Xk) represents a pixel vector in the window and
XVMF is the pixel vector with the lowest-ranked distance. So
far, we reviewed two basic filtering algorithms used for
impulse noise removal. Most of the state-of-the-art filters
evolved from these two basic filters. Our filter is also moti-
vated by these two basic filters. In Sec. 2.2, we give a brief
comparison of these two basic filters from the perspective of
both the performance and time complexity of the filters.
Please note that we will denote the MSMF as MF since it
is just an extension of the traditional MF for color images.

2.2 Brief Comparison Between the Median Filter
and Vector Median Filter

Prior to moving into constructing new algorithms for impulse
noise filtering, we briefly compared the MF and VMF for
their similarities and differences on the filtering perfor-
mance. Many publications have pointed out the advantage
of the VMF for multichannel data due to the correlation
that exists between the multichannel data. However, in
some color images, such an advantage may not present.
For example, if we take a 3 × 3 neighborhood window in
a color image with all eight pixel values [255, 255, 0]
and one noise pixel [0, 255, 255], both MF and VMF
will have identical denoising results. This might be the rea-
son that the MF shows a very competitive result compared
with those of VMF in the following experiments based on the
peak signal-to-noise ratio (PSNR) and structural similarity
index metric (SSIM) measures.

Multiple sample images were tested to compare the
denoising quality and time complexity. To assess the denois-
ing quality, we used the PSNR19 and SSIM20 as the quanti-
tative measure. The PSNR is calculated below

EQ-TARGET;temp:intralink-;e006;63;332PSNR ¼ 10 × log

�
2552

MSE

�
; (6)

where

EQ-TARGET;temp:intralink-;e007;63;276MSE ¼
XM
i¼1

XN
j¼1

ðIij − ǏijÞ2
M × N

; (7)

and M and N are the width and height of an image, Iij for
an individual pixel of the noise-free image, and Ǐij is the
corresponding pixel of the filtered image. The higher value
indicates a better denoising result. The SSIM is designed to
measure image quality considering human subjectivity in
the context of luminance, contrast, and structural similarity.20

The comparison between original image x and filtered image y
can be calculated using the following equation:

EQ-TARGET;temp:intralink-;e008;326;662SSIMðx; yÞ ¼ ð2μx2μy þ C1Þð2μxy þ C2Þ
ðμ2x þ μ2y þ C1Þðσ2x þ σ2y þ C2Þ

; (8)

where μx and μy are the average intensities and σx, σy are the
standard deviations corresponding to images x and y, respec-
tively, and μxy is the covariance. The values C1 and C2 are
constants determined by the dynamic range value.

To conduct a comparison study for MF and VMF, Lena,
pepper, and baboon images (Fig. 3) were tested with 5%,
10%, and 15% noise levels. The size of the filtering
neighborhood window is 3 × 3 and each image is
512 × 512 pixels. In terms of image complexity, we calcu-
lated the entropy for each image using the below equation,
which is based on the average (f) of three color channels

EQ-TARGET;temp:intralink-;e009;326;493HðfÞ ¼ −
XL−1
i¼0

pi log2 pi; (9)

where HðfÞ is the sum of entropy for each gray-level prob-
ability, pi, in the histogram of the average of three color
channels, f, and L − 1 is the maximum gray level for an
image. (Here, L is the total number of gray levels.) In gen-
eral, as an image complexity increases, its entropy value also
increases.

Our empirical study on the MF and VMF revealed some
interesting outcomes. As shown in Tables 1–3, the overall
results from VMF are not significantly different from
those of MF. This is shown in Table 3 for the baboon
image, in particular, which has the highest entropy among
the three images tested. In terms of time complexity,
VMF is more than 10 times slower than MF in all test
cases. However, VMF is generally considered to be more
appropriate for color image processing because it considers
inherent correlation between the red, green, and blue
color channels of the image and prevents image color
distortion.8,10,17,18 Even with some advantages over MF,
the essential problem of slow filtering speed is the major

Fig. 3 Sample images tested: (a) Lena, (b) pepper, and (c) baboon. The image size is 512 × 512.

Journal of Electronic Imaging 023023-4 Mar∕Apr 2017 • Vol. 26(2)

Hung and Chang: Moran’s I for impulse noise detection. . .



weakness of VMF although some high-speed versions have
been proposed.21 If we consider the VMF for the real-
time application, its time complexity needs be improved.
From this perspective, our proposed filter design will not
only possess the advantages of the VMF but also improve
its filtering process speed.

2.3 Brief Review on Various Vector Median Filters
Since VMF was introduced in the early 1990s, many varia-
tions of VMF have been proposed, and some of them use
different distance measures.8,9,18,22 The basic vector direc-
tional filter (BVDF) utilizes the angle between two pixel vec-
tors within the window.8 The summation of angular distances
used in this filter is calculated below

EQ-TARGET;temp:intralink-;e010;326;360αi ¼ arg min
X9
j¼1

AðXi; XjÞ i ¼ 1; 2; 3; : : : ; 9; (10)

where AðXi; XjÞ denotes the angle between pixel vectors Xi
and Xj using the arc cosine function from the following
equation:

EQ-TARGET;temp:intralink-;e011;326;276AðXi; XjÞ ¼ cos−1
�

XiXT
j

jXijjXjj
�
: (11)

The problem with the basic vector median approach is that
it can alter some pixels even if there are possibilities that
those pixels are actually noise free. Consequently, the
excessive filtering causes blurring effects on the denoised
image. To solve this problem, the center weighted vector
median filter (CWVMF)8,9 was proposed to use a weight
value for the center pixel in the window. This algorithm,
however, lacks an impulse noise detection scheme.
Consequently, the adaptive center weighted vector median
filter (ACWVMF)18,23 was proposed. The main difference
between the ACWVMF and other filters introduced so far
is that it has noise detection capability, instead of performing
noise removal on every pixel. This ACWVMF filter provides
a switching mechanism that differentiates between impulse
noise and noise-free pixels. In the ACWVMF, the noise

Table 2 A comparison of MF and VMF for peppers image with
entropy value 15.30.

Time spent MF (s) VMF (s)

5% noise 0.27 0.356

10% noise 0.29 0.357

15% noise 0.28 0.360

PSNR MF VMF

5% noise 31.4 31.4

10% noise 30.2 30.4

15% noise 28.7 29.1

SSIM MF VMF

5% noise 0.990 0.982

10% noise 0.987 0.987

15% noise 0.982 0.984

Note: s denotes seconds.

Table 3 A comparison of MF and VMF for baboon image with entropy
value 15.90.

Time spent MF (s) VMF (s)

5% noise 0.283 3.77

10% noise 0.276 3.78

15% noise 0.299 3.75

PSNR MF VMF

5% noise 18.3 18.0

10% noise 18.0 17.8

15% noise 17.7 17.5

SSIM MF VMF

5% noise 0.919 0.915

10% noise 0.911 0.906

15% noise 0.902 0.897

Note: s denotes seconds.

Table 1 A comparison of MF and VMF for Lena image with entropy
value 15.12.

Time spent MF (s) VMF (s)

5% noise 0.281 3.67

10% noise 0.288 3.73

15% noise 0.284 3.74

PSNR MF VMF

5% noise 28.6 28.3

10% noise 27.9 27.8

15% noise 27.0 27.2

SSIM MF VMF

5% noise 0.984 0.983

10% noise 0.981 0.980

15% noise 0.976 0.977

Note: s denotes seconds.
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detection step, which serves as a switching mechanism, is
based on the concept of aggregated distances assigned to
the pixels in the filtering window.18 The difference between
the accumulated distances assigned to the central pixel and to
the pixel with the lowest rank serves as an indicator of the
noise. If the indicator is greater than (or equal) a fixed thresh-
old, the output of the ACWVMF is a weighted mean of the
central pixel of the filtering window and the vector median of
its samples. Otherwise, the pixel is noise-free. In our pro-
posed algorithm, MI statistic has a better indication than
the mechanism used in the ACWVMF for noise or noise-
free pixel. This statement will be verified later in the exper-
imental results, as shown in Table 21.

Another approach is based on the “peer group”
concept.21,24,25 This type of filter excludes corrupted pixels
in the window to calculate the median vector value. The
peer group, in short, is the group of pixels in the filtering
window that minimizes the total sum of distances from
the center pixel of the group to adjacent pixels. Therefore,
the peer group vector median filter (PGVMF) is based on the
trimmed sum of distances. If the number of pixels in the peer
group (denoted by α) is equal to 9 in the window size of
3 × 3, it will be identical to the basic VMF algorithm
(Fig. 4). The replaced pixel vector is determined by the pixels
located within a peer group of pixels, which shows the mini-
mum distance or minimum dispersion.

Compared with various filters introduced so far, the
robust switching vector median filter (RSVMF)12 has a
solid noise detection algorithm that enables a filtering proc-
ess; if a pixel is determined as a noisy pixel, the RSVMF will
use the VMF to remove the noise pixel. Otherwise, the pixel
value remains unchanged. The RSVMF works in a similar
way as VMF except for the following modification:

EQ-TARGET;temp:intralink-;e012;326;566

�
if dcenter ≤ α · medðd1; d2; d3; : : : ; dmÞ then no filtering

otherwise; the filtering is same as inVMF
;

(12)

where m is the total number of pixels in a window, dcenter is
the cumulative Euclidean distances from the center pixel to
pixel 1;2; : : : ; m in the window, and α is a constant value.
The med function is to select median value from the cumu-
lative distances of d1; d2; d3; : : : ; dm using the way we
calculate the cumulative distance in the VMF.

Another denoising method is to process vector-based
filtering through the trimming scheme.26 The basic idea of
trimming schemes is to select a group of pixels in the filter-
ing window that may exclude noise pixels through the rank-
ing order. In a sense, this filter is very similar to the PGVMF.
However, the RSVMF has some limitation on removing the
noise pixels if the noise level is increased to a certain per-
centage, such as 30% noise that is used in our experiments.

All of the algorithms reviewed so far have their own
unique characteristics and limitations for filtering impulse
noise through vector-based processing. There are several dif-
ferent variations of algorithms reviewed above to improve
the result in such a way that the filter can preserve edge
details and minimize blurring effects.13 A comprehensive
survey on impulse noise removal filters was given in
Ref. 10. Our objective is to design an efficient algorithm
for detection and removal of the random-valued impulse
noise in color images based on the fundamentals of MI
statistics and Laplacian kernels. Our preliminary study on
multispectral images shows that this filter is effective in
removing impulse noise.27 In summary, the vector-type
MFs listed in Table 4 were tested and compared in this study.

3 Proposed Algorithm: Moran’s I Vector Median
Filter

Our proposed algorithm for noise detection and removal in
color images consists of three major components: MI for
spatial autocorrelation, four 1-D Laplacian kernels, and the
VMF. The first two components are used for noise detection
in the algorithm, and the VMF is used for denoising.

3.1 Moran’s I for Spatial Autocorrelation
The concept of spatial autocorrelation can be traced back
to the first law of geography—“Everything is related to

Fig. 4 A comparison of VMF and PGVMF.25 In this example, P1 is the
vector median because P1 has the minimum distance from itself to all
others with the VMF. For PGVMF, peer group vector median is P2
because alpha (α) value is 5; P2 is the minimum distance.

Table 4 Different filters being compared in this study.

Filter type Abbreviation

Vector median filter VMF

Basic vector directional filter BVDF

Center weighted vector median filter CWVMF

Adaptive center weighted vector median filter ACWVMF

Peer group vector median filter PGVMF

Robust switching vector median filter RSVMF
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everything else, but near things are more related than distant
things.” By definition, spatial autocorrelation is clarified
as follows: “Spatial autocorrelation refers to the fact that
the value of a variable at one point in space is related to
the value of that same variable in a nearby location.”28 In
fact, the spatial information concept has long been used
in pattern recognition and image analysis with different
types of formats. To determine the spatial autocorrelation,
Moran introduced MI to check the degree of spatial autocor-
relation in areal data.29 MI is calculated by the following
equation, and its range is between −1 and þ1:

EQ-TARGET;temp:intralink-;e013;63;631Moran’s I ¼ m
P

m
i

P
m
j ωijðyi − ȳÞðyj − ȳÞP

m
i

P
m
j ðωijÞ

P
m
i ðyi − ȳÞ2 : (13)

Here, we assume that there are m regions, and ωij is a mea-
sure of the spatial proximity between regions i (with value
yi) and j (with value yj). The parameter ȳ is the mean value
of m regions. The interpretation of the I value is categorized
into two specific spatial patterns. If the value closes to þ1,
it indicates a strong homogeneous spatial autocorrelation
where local similarity or homogenous spatial patterns
exist. A value nearing −1 indicates the strong heterogeneous
spatial autocorrelation, but it is a negative pattern in which
heterogeneous values are grouped together (e.g., a mixture of
very high and very low values). This negative spatial auto-
correlation is unusual in nature. For example, high-income
households are not usually located in urban twilight zones.
If the I value is zero, there is an absence of any strong spatial
autocorrelation or no distinct spatial pattern, such as
checkerboard.28 The calculation of MI can be exemplified
with the areal data in Fig. 5(a), which is similar to the exam-
ple in Ref. 27.

To find out the weight value of ωij, it is necessary to check
the connectivity between regions i and j (i.e., immediate
neighbors). For example, region A has connectivity with
B and C. Region D has connectivity with B, C, E, and F,
as shown in Fig. 5(a). Hence, a binary connectivity weight
matrix [shown in Fig. 5(b)] can be constructed corresponding
to the data in Fig. 5(a).

From the denominator of Eq. (13),
P

m
i ðyi − ȳÞ2 repre-

sents the variance of the regional value. As a result, m is
replaced by 6 [since there are six regions in Fig. 5(a)],
MI is calculated as (the detail is omitted here)

EQ-TARGET;temp:intralink-;sec3.1;326;7526
X6
i

X6
j

ωijðyi − ȳÞðyj − ȳÞ ¼ 6 × 100;

X6
i

X6
j

ðωijÞ
X6
i

ðyi − ȳÞ2 ¼ 18 × 244.

Hence

EQ-TARGET;temp:intralink-;e014;326;663Moran’s I ¼ 6ð100Þ
18ð244Þ ¼ 0.1488: (14)

From the above result, the I value gives a small positive
spatial autocorrelation for the given data.

The implementation of MI for noise detection in color
images can be done with the same procedure as shown in
the example above. The difference now is that a region
used in the previous example will be replaced by a pixel
in the filtering window for impulse noise detection. An
example is given in Table 5, which shows a 3 × 3 filtering

Fig. 5 (a) An area of six regions that are represented by A, B, C, D, E,
and F with a value associated with each region26 and (b) correspond-
ing binary connectivity matrix.

Table 5 (a) A hypothetical example of 3 × 3 filtering window (one
channel only), (b) its pixel numbering scheme for the pixels in (a),
and (c) the binary connectivity (i.e., adjacency) matrix for (a) that
shows which pixel is adjacent (marked by 1) to pixel number from
0 to 8. Otherwise, 0 will be used for nonadjacency. For example,
for pixel 0, pixels 1, 3, and 4 are adjacent to it.

(a)

8<
:

25
25
25

25
200
25

25
25
25

9=
; for one channel

(b)

Pixel 0 Pixel 1 Pixel 2

Pixel 3 Pixel 4 Pixel 5

Pixel 6 Pixel 7 Pixel 8

(c)

Pixel number 0 1 2 3 4 5 6 7 8

0 0 1 0 1 1 0 0 0 0

1 1 0 1 1 1 1 0 0 0

2 0 1 0 0 1 1 0 0 0

3 1 1 0 0 1 0 1 1 0

4 1 1 1 1 0 1 1 1 1

5 0 1 1 0 1 0 0 1 1

6 0 0 0 1 1 0 0 1 0

7 0 0 0 1 1 1 1 0 1

8 0 0 0 0 1 1 0 1 0
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window where the intensity range of a given pixel is between
0 and 255 for an 8-bit color image. Based on the 8-connec-
tivity concept,1 we can construct a weight matrix similar to
Fig. 5(b). The weight matrix is given in Table 5. Please note
that only one channel is shown here.

Based on the weight matrix formulated, for each color
channel of RGB, MI can be calculated to check the degree

of spatial autocorrelation. If all MI values from three
channels have near þ1 value, then all the pixels in the win-
dow are relatively similar. In other words, if any MI value
from three channels is close to −1, there is a high probability
that impulse noises exist in the filtering window. The
threshold value ε0 for determining the noise area is set up
through our experiments, which will be explained in detail
in Sec. 3.3.

3.2 Four One-Dimensional Laplacian Kernels
By means of a single detector based on MI index, it may not
be robust to detecting impulse noise precisely. This is
because MI measures a region’s spatial autocorrelation. In
other words, MI focuses on all pixels of the filtering window,
not the central pixel itself in the window. Hence, it is required
to have the next level detector for impulse noise. The appli-
cation of Laplacian kernels is one of the precise and simple
detecting algorithms for impulse noise. In fact, several
median-based impulse noise detectors often misclassify a
noise-free pixel into the noise category.4,17 In our proposed
filter, if only MI is used for the detection, there is a chance
that pixels located on the lines and edges can be categorized
as impulse noise also. Using the Laplacian kernels as the
second-level detection will eliminate this problem.

Table 6 Threshold testing with Lena image: entropy 15.12.

PSNR ε0 ¼ −0.2 ε0 ¼ −0.1 ε0 ¼ 0.0 ε0 ¼ 0.1 ε0 ¼ 0.2 ε0 ¼ 0.3

5% noise 27.49 28.95 28.77 28.58 28.40 28.34

10% noise 23.87 27.51 27.92 27.90 27.84 27.81

15% noise 20.95 25.88 27.11 27.22 27.20 27.19

SSIM ε0 ¼ −0.2 ε0 ¼ −0.1 ε0 ¼ 0.0 ε0 ¼ 0.1 ε0 ¼ 0.2 ε0 ¼ 0.3

5% noise 0.9829 0.9854 0.9839 0.9830 0.9825 0.9824

10% noise 0.9569 0.9569 0.9806 0.9802 0.9799 0.9799

15% noise 0.9138 0.9722 0.9774 0.9771 0.9769 0.9769

Table 7 Threshold testing with peppers image: entropy 15.30.

PSNR ε0 ¼ −0.2 ε0 ¼ −0.1 ε0 ¼ 0.0 ε0 ¼ 0.1 ε0 ¼ 0.2 ε0 ¼ 0.3

5% noise 28.16 31.54 31.93 31.77 31.55 31.44

10% noise 23.38 28.80 30.41 30.50 30.44 30.39

15% noise 20.48 26.19 28.80 29.11 29.10 29.10

SSIM ε0 ¼ −0.2 ε0 ¼ −0.1 ε0 ¼ 0.0 ε0 ¼ 0.1 ε0 ¼ 0.2 ε0 ¼ 0.3

5% noise 0.9839 0.9921 0.9913 0.9903 0.9895 0.9891

10% noise 0.9520 0.9855 0.9883 0.9879 0.9874 0.9871

15% noise 0.9036 0.9727 0.9838 0.9840 0.9838 0.9837

255 0 0
0 0 0
0 0 255

0 0 0
–1 2 –1

0 0 0

(a) (b)

(c) (d)

(e) (f)

0 0 –1
0 2 0

–1 0 0

255 0 0
0 255 0
0 0 255

0 –1 0
0 2 0
0 –1 0

–1 0 0
0 2 0
0 0 –1

Fig. 6 A hypothetical example shows a line with noise in (a) with 0 as
the noise in the center pixel and without noise in (b). Four 1-D
Laplacian kernels with a size of 3 × 3: (c) horizontal, (d) vertical,
(e) 45-deg, and (f) 135-deg directions.

Journal of Electronic Imaging 023023-8 Mar∕Apr 2017 • Vol. 26(2)

Hung and Chang: Moran’s I for impulse noise detection. . .



In a hypothetical example as shown in Figs. 6(a) and
6(b), we assume this image patch is a line with a direction
in 135 deg. We also assume that the patch is identical in
three channels. MI value is 0.079 in (a), and the center
pixel is noise. Based on our proposed algorithm, if we
set the threshold value ε0 to 0.0, the center pixel will
be detected as a noise pixel (MI value is not less than
the threshold) and will go through the denoising
process. However, the minimum response from four 1-D
Laplacian kernels is 0. Based on the algorithm in Ref. 4,
the response is not considered a noise pixel since its
value is so small (i.e., 0). The reason is that we usually
set the threshold value T0 greater than 0 for the response

of Laplacian kernels. Hence, MI can overcome the weak-
ness of the 1-D Laplacian kernels in this example. On
the other hand, if a line is given as shown in (b), MI
value is −0.087. Based on our proposed algorithm, if we
set threshold value ε0 to 0.0, with the second level of detec-
tion (i.e., four 1-D Laplacian kernels), it will be detected as
a noise-free pixel based on step 4 in our proposed algorithm
(the condition ε0 is satisfied, but the condition T0 is not sat-
isfied). The minimum response from four 1-D Laplacian
kernels is 0 (with the 135-deg direction of the 1-D
Laplacian kernel); based on the algorithm in Ref. 4, the
response is not considered a noise pixel since its value is
small (i.e., 0). This center pixel will be considered a

Fig. 7 Five images, (a) ocean, (b) F-16 fighter, (c) mountain, (d) caster, and (e) IC motherboard, tested to
determine the threshold value for Laplacian kernel response. The image size is 512 × 512 pixels. The
entropy is (a) 12.99, (b) 13.76, (c) 15.48, (d) 15.73, and (e) 16.07.

Table 8 Threshold testing with baboon image: entropy 15.90.

PSNR ε0 ¼ −0.2 ε0 ¼ −0.1 ε0 ¼ 0.0 ε0 ¼ 0.1 ε0 ¼ 0.2 ε0 ¼ 0.3

5% noise 19.55 18.93 18.39 18.11 17.99 17.97

10% noise 17.98 17.98 18.00 17.84 17.76 17.75

15% noise 16.66 17.67 17.65 17.56 17.52 17.51

SSIM ε0 ¼ −0.2 ε0 ¼ −0.1 ε0 ¼ 0.0 ε0 ¼ 0.1 ε0 ¼ 0.2 ε0 ¼ 0.3

5% noise 0.9431 0.9303 0.9205 0.9161 0.9146 0.9144

10% noise 0.9175 0.9177 0.9103 0.9069 0.9057 0.9055

15% noise 0.8894 0.9041 0.9000 0.8978 0.8972 0.8971

Journal of Electronic Imaging 023023-9 Mar∕Apr 2017 • Vol. 26(2)

Hung and Chang: Moran’s I for impulse noise detection. . .



noise-free pixel. Hence, the weakness of MI can be com-
plemented by the four 1-D Laplacian kernels.

In Fig. 6, four 3 × 3 1-D Laplacian kernels are used in
our experiments for the second-level noise detection. In
fact, both 3 × 3 and 5 × 5 1-D Laplacian kernels4 were
tested simultaneously to verify which size of the kernel is
more appropriate for the second-level detection. In our
experiments, the kernels of different sizes do not show
any significantly different results. At the first level of
noise pixel detection, the corrupted image is tested through
MI index; then if necessary, four 1-D Laplacian kernels will
be used in the second-level detection. Four 1-D Laplacian
kernels are sensitive to edges with four directions. The mini-
mum absolute value from the four kernel operators is chosen
as the detection value.

The Laplacian kernel response is denoted as Ci;j, and⊗ is
a kernel operator as shown below

EQ-TARGET;temp:intralink-;e015;63;565Ci;j ¼ minfxi;j ⊗ Kd∶d ¼ 1 to 4g; (15)

where xi;j is a pixel andKd is a Laplacian kernel. Each kernel
is applied to choose the minimum absolute value in the win-
dow. This value is compared with the threshold (T0) value to
determine whether it is a noise pixel or not [Eq. (16)]. Please
note that we use C to represent Ci;j for the pixel ði; jÞ in the
examination in Eq. (16). If the value is larger than the thresh-
old, it is an impulse noise. If the value is smaller than
(or equal to) the threshold, then the current pixel is either
a noise-free or edge pixel.4 The determination of this thresh-
old will be discussed in Sec. 4

EQ-TARGET;temp:intralink-;e016;63;424fðCÞ ¼
�
C > T0; Impulse noise

C ≤ T0; Noise free or edge
: (16)

From the detection based on MI and Laplacian kernel
response, a pixel is either classified as a noise pixel, in
which the VMF will be called in to remove the noise, or
the pixel value remains unchanged.

3.3 Proposed Filtering Process with Vector Median
Filter

The remaining issue related to the implementation of
Moran’s I vector median filter (MIVMF) is the determina-
tion of the threshold value because the improper threshold
setting can produce unwanted filtering results. First, the
threshold value ε0 for MI should be properly set up to
check if pixels in the sliding window are located at the
noise area or the relatively homogenous, noise-free area.

Table 10 Results on F-16 image. The number next to each noise
level column shows the number of iterations in the filtering process.

Threshold 5% (1) 10% (2) 15% (2) Total

10 30.75 28.59 27.22 86.56

20 32.33 29.97 28.49 90.79

30 33.58 31.19 29.61 94.38

40 34.54 32.29 30.61 97.44

50 35.07 33.17 31.28 99.52

60 34.95 33.76 31.81 100.52

70 34.54 33.84 31.86 100.24

80 33.67 33.49 31.47 98.63

90 32.79 32.78 30.78 96.35

100 31.8 31.88 29.88 93.56

110 30.97 30.82 28.75 90.54

120 30.11 29.71 27.55 87.37

130 29.27 28.48 26.41 84.16

140 28.46 27.36 25.81 81.63

Note: The best threshold is highlighted with bold font.

Table 9 Results on ocean image. The number next to each noise
level column shows the number of iterations in the filtering process.

Threshold 5% (1) 10% (2) 15% (2) Total

10 45.72 42.36 39.9 127.98

20 45.74 42.88 40.18 128.8

30 44.65 42.71 40.03 127.39

40 43.18 42.49 39.83 125.5

50 41.28 42.09 39.52 122.89

60 39.48 40.97 38.88 119.33

70 38.08 39.44 37.54 115.06

80 36.55 37.63 35.91 110.09

90 35.02 35.72 34.18 104.92

100 33.56 33.93 32.4 99.89

110 32.28 32.09 30.39 94.76

120 31.19 30.44 28.54 90.17

130 30.18 29 26.87 86.05

140 29.17 27.53 25.26 81.96

Note: The best threshold is highlighted with bold font.

Fig. 8 A comparison chart for the threshold values used in four 1-D
Laplacian kernels for images tested.
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We chose three images as shown in Fig. 3 to verify the proper
threshold value. We tested all three images with different
noise levels for 5%, 10%, and 15%, and the threshold
value ε0 can be properly estimated. If MI is less than ε0,
then the Laplacian kernels will be used to determine if it
is a noisy pixel. Otherwise, it is a noise-free pixel.

Table 13 Results on IC motherboard image. The number next to
each noise level column shows the number of iterations in the filtering
process.

Threshold 5% (1) 10% (2) 15% (2) Total

10 16.18 15.24 14.65 46.07

20 16.93 15.58 14.94 47.45

30 17.59 16 15.26 48.85

40 18.21 16.45 15.63 50.29

50 18.89 16.97 16.06 51.92

60 19.6 17.55 16.56 53.71

70 20.37 18.18 17.08 55.63

80 21.19 18.86 17.64 57.69

90 21.98 19.52 18.16 59.66

100 22.72 20.16 18.57 61.45

110 23.24 20.61 18.87 62.72

120 23.45 20.82 19 63.27

130 23.51 20.8 18.91 63.22

140 23.35 20.57 18.62 62.54

Note: The best threshold is highlighted with bold font.

Algorithm 1 MIVMF.

Step 1: Read in a noise color image and set threshold values ε0 and
T 0. (Please note that the selection of threshold values ε0 and
T 0 was discussed in Sec. 3.3 in detail and is given in
Table 14.)

Steps 2 to 5 are repeated for each pixel in the image for each
iteration.

Step 2: Calculate MI value in the neighborhood of the pixel within
the defined filtering window for each color component of
the color image.

Step 3: Evaluate the four 1-D Laplacian kernel response values in
the neighborhood of the pixel and select the minimum kernel
response value (i.e., Min) for each color component of
the color image.

Step 4: If any MI value from all three color components is less than ε0
(first-level detection), and if the Min value from all three color
components is larger than T 0 (second-level detection), go to
step 5 (for denoising). Otherwise, go to step 2 (it is a noise-free
pixel).

Step 5: Use the VMF for removing noise and then go to step 2.

Table 12 Results on caster image. The number next to each noise
level column shows the number of iterations in the filtering process.

Threshold 5% (1) 10% (2) 15% (2) Total

10 23.12 21.33 20.34 64.79

20 24.05 22.01 20.92 66.98

30 24.83 22.67 21.53 69.03

40 25.53 23.3 22.05 70.88

50 26.13 23.88 22.59 72.6

60 26.58 24.38 23.05 74.01

70 26.95 24.85 23.42 75.22

80 27.26 25.22 23.69 76.17

90 27.43 25.5 23.91 76.84

100 27.5 25.53 23.96 76.99

110 27.53 25.55 23.88 76.96

120 27.35 25.3 23.57 76.22

130 27.01 24.91 23.13 75.05

140 26.58 24.4 22.58 73.56

Note: The best threshold is highlighted with bold font.

Table 11 Results on mountain image. The number next to each
noise level column shows the number of iterations in the filtering
process.

Threshold 5% (1) 10% (2) 15% (2) Total

10 28.21 26.58 25.52 80.31

20 29.53 27.73 26.58 83.84

30 30.73 28.8 27.55 87.08

40 31.73 29.79 28.37 89.89

50 32.47 30.74 29.14 92.35

60 32.98 31.61 29.73 94.32

70 33.18 32.16 30.05 95.39

80 32.98 32.31 30.08 95.37

90 32.47 32.07 29.87 94.41

100 31.77 31.52 29.31 92.6

110 31 30.72 28.62 90.34

120 30.3 29.8 27.79 87.89

130 29.6 28.69 26.75 85.04

140 28.69 27.7 25.69 82.08

Note: The best threshold is highlighted with bold font.
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As shown in Tables 6 and 7, the best threshold value ε0 is
somewhere between −0.1 and 0.1 from the results (bold
print) of PSNR and SSIM. In Table 8, the best threshold
value is between −0.2 and 0. From those experimental
results, this information can be used as an indicator for
choosing a threshold value for MI index for a color image
with different complexity in entropy. Consequently, the
promising PSNR and SSIM results from Lena, peppers,
and baboon images are located around ε0 ¼ 0. Hence, we
set up our threshold value as ε0 ¼ 0.0 for all images in
our experiments. Furthermore, the difference in the range
of possible threshold values for ε0 is so small such that
the selection of this index is not critical to the filtered results.

The next threshold to be determined is the response of
four 1-D Laplacian kernels. We tested many images to
find out whether there exists any common threshold value
which can be used for an image with different complexity.
However, we could not find such a common threshold
value with our initial experiments. Therefore, we set up
the hypothesis that image complexity might be related

Fig. 9 Filtering results of Lena image. To see the filtering result in detail, it has been zoomed at the center
area: (a) an original image, (b) 15% impulse noise added, and (c), (d), (e), (f), (g), (h), and (i) are the
results of VMF, BVDF, CWVMF, ACWVMF, PGVMF, RSVMF, and MIVMF (i.e., our proposed filter),
respectively.

Table 14 Some additional parameters for filters used in the
experiments.

Filters Extra parameters used besides 3 × 3 window

CWVMF Center weight ¼ 4

ACWVMF λ ¼ 2, τ ¼ 2, threshold ¼ 80

PGVMF α ¼ 6

RSVMF α ¼ 1.25 for light noise, α ¼ 1.5 for heavy noise

Proposed 3 × 3 window size, Laplacian kernel threshold
value, T 0 is interpolated based on the image
complexity with entropy measure as shown in Fig. 8

MI threshold ε0 ¼ 0.0
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with the threshold value of Laplacian kernels. We chose five
images, as shown in Fig. 7, with different entropy levels and
filtered with various threshold values. In our empirical study
on the images tested, the threshold range is between 20 and
120, as shown in Fig. 8. In addition, the noise levels of 5%,
10%, and 15% were tested. In Fig. 8, only Laplacian kernels
were used to determine the threshold (T0) for the VMF. For
the noise level 10% and 15%, the filtering process was run
twice to improve overall outcomes measured by PSNR. For
the 5% case, one filtering was good enough for removing
impulse noise. The number of iterations is written next to
the noise level, as shown in Tables 9–13.

By observing experimental results from Tables 9–13, we
discovered a trend in the pattern the setup of the threshold
value for Laplacian kernels response for an image. This
trend is to increase the threshold value based on the entropy
of an image being denoised, as shown in Fig. 8. Therefore, it is
quite straightforward to calculate the entropy of an image to
estimate the threshold value. Based on this assumption, we
used the interpolation method for assessing a threshold
value for an image being denoised in our simulation in Sec. 4.

From the discussions above, our proposed denoising
Algorithm 1 (MIVMF) is summarized in the steps. Please
note that the algorithm can be repeated if needed. In other
words, the output from the first pass of the algorithm becomes
the input for the second pass and so on.

4 Experimental Results
To evaluate the performance of the proposed algorithm and
compare it with other well-developed denoising filters, we
tested all the filters listed in Table 4. Various test parameters,
including the filtering window size and threshold values, are
listed in Table 14. All test conditions except our proposed
filter are based on the suggested parameter values from
the literature reviewed. The size of the neighborhood win-
dow used for all filters is 3 × 3. To compare the denoising
performance, PSNR, SSIM, and time complexity measured
in seconds are calculated. Three images from Fig. 3 are used
in the experiments. Some of denoised images are shown in
Figs. 9–12. Please note that in the noise levels 10% and 15%,
both RSVMF and MIVMF were run twice to obtain the best
outcome measured by PSNR. Other filters were run only

Fig. 10 Filtering results of peppers image. To see the filtering result in detail, it has been zoomed at the
center area: (a) an original image, (b) 15% impulse noise added, and (c), (d), (e), (f), (g), (h), and (i) are
the results of VMF, BVDF, CWVMF, ACWVMF, PGVMF, RSVMF, and MIVMF (i.e., our proposed filter),
respectively.
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once. (Otherwise, the image will be blurred if they were run
more than once.) For the repetition, the output from the first
pass of the algorithm becomes the input for the second pass
and so on.

In our experiments, there is no significant difference for a
filter in terms of the time complexity for processing an image
with any noise level or image complexity based on the
entropy measure. This can be seen from Tables 15–17.
The proposed MIVMF is the best among all the filters tested
with the PSNR measure. For the SSIM measure, which is for
human eye perception, all the filters are almost identical,
except that BVDF is degrading when the noise level is
increased.

On the contrary, for an image with medium entropy, such
as the peppers image, the PSNR measure for all filters is
decreasing when the noise level is increased, as shown in
Table 16. This phenomenon is also shown in the SSIM mea-
sure for the BVDF. Otherwise, the SSIM is very similar for
all the filters tested. The proposed MIVMF has the best
PSNR measure for an image with low, medium, and high

entropy. For images with higher entropy, a trend exists for
all filters that the SSIM is decreasing when the noise
level is increasing, except for the VMF in which the 15%
noise shows a high SSIM value, as shown in Table 17. In
terms of the PSNR measure, all of the filters tested decrease
if the image complexity is increased. However, the MIVMF
has the overall highest PSNR value at different noise levels
and with almost any complexity of images measured in
entropy.

Based on the results shown in Tables 15–17, there is only
slight difference on the performance of RSVMF andMIVMF
for the low noise level. Hence, to measure the effectiveness
of RSVMF and MIVMF for heavy noises, both filters were
tested on 20%, 25%, and 30% noise levels on three images,
and the results are shown in Tables 18–20. (Please note that
the results are from three iterations of each filter, and overall
time spent is the sum of three iterations.) Test threshold (α)
for RSVMF is 1.5 based on Ref. 12. While the SSIM is sim-
ilar for both filters, the proposed MIVMF has a better PSNR
measure with the higher noise level. The MIVMF has the

Fig. 11 Filtering results of baboon image. To see the filtering result in detail, it has been zoomed at the
center area: (a) an original image, (b) 15% impulse noise added, and (c), (d), (e), (f), (g), (h), and (i) are
the results of VMF, BVDF, CWVMF, ACWVMF, PGVMF, RSVMF, and MIVMF (i.e., our proposed filter),
respectively.
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Fig. 12 (a) Specific filtering results of 30% noise added cases for the comparison among PGVMF,
RSVMF, and MIVMF (i.e., our proposed filter). To see the filtering result in detail, it has been zoomed
at the center area. Three original images are shown in the first column, the second column are results of
PGVMF, the third column are results of RSVMF, and the last column are results of MIVMF. (b) The entire
baboon image is shown to illustrate the denoising effect of PGVMF, RSVMF, and MIVMF.We can clearly
see that the filtered result by PGVMF is distorted; in particular, the moustache of the baboon became very
thick. Each filter was repeated three times to obtain the result.
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Table 18 A comparison of RSVMF and MIVMF on heavy noise
added Lena image.

Time spent RSVMF (s) MIVMF (s)

20% noise 11.37 4.20

25% noise 11.37 4.48

30% noise 11.35 4.71

PSNR RSVMF MIVMF

20% noise 28.34 29.46

25% noise 26.72 28.22

30% noise 24.37 26.85

SSIM RSVMF MIVMF

20% noise 0.9869 0.9881

25% noise 0.9802 0.9828

30% noise 0.9649 0.9732

Note: s denotes seconds.

Table 16 Test results of peppers with entropy 15.30 and T 0 ¼ 68 in
5%, 10%, and 15% noise levels.

Time
spent

VMF
(s)

BVDF
(s)

CWVMF
(s)

ACWVMF
(s)

PGVMF
(s)

RSVMF
(s)

MIVMF
(s)

5% 3.53 7.66 3.53 10.76 4.32 3.70 1.19

10% 3.55 7.60 3.55 11.07 4.33 7.36 2.38

15% 3.57 7.63 3.57 11.42 4.43 7.39 2.65

PSNR VMF BVDF CWVMF ACWVMF PGVMF RSVMF MIVMF

5% 31.44 26.19 30.12 32.03 29.03 35.76 35.50

10% 30.39 23.00 29.34 30.84 28.91 33.78 33.88

15% 29.11 19.97 28.31 29.42 28.62 31.28 31.84

SSIM VMF BVDF CWVMF ACWVMF PGVMF RSVMF MIVMF

5% 0.98910.9583 0.9878 0.9955 0.9853 0.9970 0.9974

10% 0.98710.9058 0.9858 0.9937 0.9851 0.9939 0.9969

15% 0.98370.8228 0.9822 0.9901 0.9844 0.9927 0.9947

Note: Similar to the note in Table 15: In 10%, theMIVMF took 1.43 and
0.95 s (2.38-s total) for first and second iteration, respectively. For
15%, it spent 1.66 and 0.99 s (2.65-s total). For RSVMF with 10%,
it took 3.73 and 3.63 s (7.36-s total). For 15%, it took 3.75 and
3.64 s (7.39-s total). s denotes seconds.

Table 17 Test results of baboon with entropy 15.90 and T 0 ¼ 109 in
5%, 10%, and 15% noise levels.

Time
spent

VMF
(s)

BVDF
(s)

CWVMF
(s)

ACWVMF
(s)

PGVMF
(s)

RSVMF
(s)

MIVMF
(s)

5% 3.81 7.79 3.68 12.93 4.49 3.98 1.25

10% 3.72 7.65 3.77 13.11 4.49 7.77 2.47

15% 3.73 7.65 3.72 13.19 4.47 7.76 2.70

PSNR VMF BVDF CWVMF ACWVMF PGVMF RSVMF MIVMF

5% 17.98 14.88 17.70 17.92 17.29 24.29 25.77

10% 17.76 14.53 17.48 17.68 17.24 21.91 23.30

15% 17.52 14.12 17.24 17.41 17.14 20.49 21.70

SSIM VMF BVDF CWVMF ACWVMF PGVMF RSVMF MIVMF

5% 0.91440.8125 0.9103 0.9171 0.8993 0.9823 0.9876

10% 0.90550.7900 0.9012 0.9078 0.8968 0.9664 0.9767

15% 0.98710.7598 0.8925 0.8988 0.8937 0.9563 0.9639

Note: Similar to the note in Table 15: In 10% noise, our proposed
MIVMF took 1.42 and 1.05 s (2.47-s total) for first and second itera-
tion, respectively. For 15%, it spent 1.60 and 1.10 s (2.70-s total).
For RSVMF with 10%, it took 3.89 and 3.89 s (7.77-s total). For 15%,
it took 3.90 and 3.86 s (7.76-s total). s denotes seconds.

Table 15 Tested results of Lena with entropy 15.12 and T 0 ¼ 67 in
5%, 10%, and 15% noise levels.

Time
spent

VMF
(s)

BVDF
(s)

CWVMF
(s)

ACWVMF
(s)

PGVMF
(s)

RSVMF
(s)

MIVMF
(s)

5% 3.67 7.79 3.68 11.72 4.44 3.88 1.26

10% 3.68 7.64 3.70 11.64 4.48 7.72 2.53

15% 3.69 7.65 3.70 11.79 4.48 7.76 2.78

PSNR VMF BVDF CWVMF ACWVMF PGVMF RSVMF MIVMF

5% 28.34 24.92 27.60 29.94 26.99 34.52 34.85

10% 27.81 22.59 27.12 29.06 26.89 32.40 32.99

15% 27.19 20.41 26.58 28.16 26.75 30.11 30.93

SSIM VMF BVDF CWVMF ACWVMF PGVMF RSVMF MIVMF

5% 0.98240.9515 0.9806 0.9907 0.9782 0.9947 0.9971

10% 0.97990.9061 0.9780 0.9879 0.9773 0.9898 0.9954

15% 0.97690.8524 0.9750 0.9849 0.9772 0.9881 0.9926

Note: In 10% noise, the MIVMF was run two iterations, which required
1.48 and 1.05 s (2.53-s total) for first and second iteration, respec-
tively. Similarly, for 15%, it took 1.71 and 1.07 s (2.78-s total). For
RSVMF, we also ran two iterations for 10% and 15%. For 10%
noise, it took 3.87 and 3.85 s (7.72-s total). For 15%, it took 3.96
and 3.80 s (7.76-s total). s denotes seconds.
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overall highest PSNR value in those noise levels. In addition,
the running time for the MIVMF is less than half of
the RSVMF.

To further demonstrate the effectiveness of the proposed
algorithm in denoising, we tested on some different images
and performed a number of iterations for each filter listed in

Table 14. Images tested are shown in Fig. 13 which includes
parrot (entropy 15.25), penguin (entropy 15.40), and koala
images (entropy 16.18). As mentioned in Table 14, we
used 0.0 for MI threshold ε0 and threshold T0 is interpolated
based on the image entropy. Table 21 shows the PSNR score
for each filter tested. To each image 5% noise was added,
and each filter was run only once in the experiments.
Experimental results show that the proposed algorithm,
MIVMF, has the best PSNR scores.

In our study, some filters will cause the distortion of
images and blur the image details if the filter is run multiple
times on the image. To test the efficiency of the proposed
algorithm, we ran each filter with a number of iterations
to compare the filtered results. The results were obtained
with six iterations for each filter and are shown in
Table 21. All PSNR scores for VMF, BVDF, CWVMF,
ACWVMF, PGVMF, and RSVMF are decreasing when
the number of iterations is increased. This phenomenon will
continue if the filter is iterated again. This indicates that the
filtered image is distorted and image details are not pre-
served. The PSNR scores with our proposed MIVMF either
decrease or increase slightly, as shown in Table 21. In either
case, the MIVMF will reach a saturation state, and its PSNR
score will not change again. For example, in Tables 21(a)
and 21(d) (first column), the PSNR of the MIVMF will
stay in 23.57 and 26.43, respectively, no matter how many
more iterations are repeated. Similarly, in Tables 21(b)
and 21(c) (first column), the PSNR will stay in 29.59 and
30.33, respectively. This important characteristic shows
that the MIVMF is an efficient filter with the good detection
mechanism for determining if a pixel is noise or not. Hence,
the image details will not be damaged or blurred. We also
observed that the MIVMF has the highest PSNR value no
matter how many iterations were repeated. In addition, the
MIVMF runs much faster than other filters, as shown in
Tables 15–20.

By observing the experimental results in Tables 15–21
and Figs. 9–12, the proposed MIVMF shows a promising
result compared with other vector-based filters. We devel-
oped an efficient denoising filter for accomplishing better
time complexity and efficient denoising results, which was
the goal set up at the beginning of this study. Our two-level
detection function based on MI and 1-D Laplacian kernels
works properly, so it can reduce the processing time and
produce better filtered results compared with other similar
type of vector-based filters.

5 Conclusion and Future Work
We propose a noise detection and removal filter that uses MI
statistics (i.e., MI value) to calculate the spatial autocorrela-
tion indices and combine with four 1-D Laplacian kernels for
random-valued impulse noise detection for color images. As
far as we know, this may be the first attempt to use MI sta-
tistics for color image denoising. This is an adaptive filter in
which the MI value and response of four 1-D Laplacian
kernels are calculated for each 3 × 3 neighborhood window.
This two-level noise detection scheme works efficiently as it
has the capability of distinguishing a given pixel as noise
or not. The VMF is then used to process those noisy pixels
and leave noise-free pixels untouched. Our proposed filter
can be considered an efficient extension of the VMF in
a sense. As an extension, the proposed filter can achieve

Table 20 A comparison of RSVMF and MIVMF on heavy noise
added baboon image.

Time spent RSVMF (s) MIVMF (s)

20% noise 11.51 4.11

25% noise 11.57 4.32

30% noise 11.58 4.55

PSNR RSVMF MIVMF

20% noise 19.18 20.47

25% noise 17.98 19.49

30% noise 16.66 18.49

SSIM RSVMF MIVMF

20% noise 0.9402 0.9496

25% noise 0.9217 0.9328

30% noise 0.8984 0.9104

Note: s denotes seconds.

Table 19 A comparison of RSVMF and MIVMF on heavy noise
added peppers image.

Time spent RSVMF (s) MIVMF (s)

20% noise 10.98 3.99

25% noise 10.95 4.26

30% noise 11.05 4.58

PSNR RSVMF MIVMF

20% noise 29.40 30.27

25% noise 26.75 28.70

30% noise 24.48 27.31

SSIM RSVMF MIVMF

20% noise 0.9896 0.9916

25% noise 0.9859 0.9862

30% noise 0.9707 0.9788

Note: s denotes seconds.
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Table 21 The PSNRs for different numbers of iterations and filters are listed: (a) parrot was corrupted with 5% noise, (b) penguin with 5% noise,
(c) koala with 5% noise, and (d) parrot with 15% noise. Each filter was run six times in the experiments and is represented with the respective
number in the first column, and then each PSNR was calculated for each run. The saturated modes were highlighted with italicized font in the table
for the MIVMF filter.

No. of iterations VMF BVDF CWVMF ACWVMF PGVMF RSVMF MIVMF

(a) 1 19.75 16.50 19.46 19.61 19.08 22.79 24.18

(a) 2 19.28 16.38 19.14 19.29 18.24 21.72 23.72

(a) 3 18.86 15.94 18.64 18.86 17.71 21.34 23.60

(a) 4 18.62 15.60 18.40 18.66 17.46 21.18 23.58

(a) 5 18.45 15.27 18.20 18.48 17.29 21.10 23.57

(a) 6 18.33 15.06 18.08 18.39 17.18 21.07 23.57

(b) 1 24.94 20.48 24.40 24.96 23.56 28.47 29.49

(b) 2 24.10 19.84 23.65 24.21 22.30 27.30 29.66

(b) 3 23.55 19.28 23.05 23.71 21.65 26.88 29.61

(b) 4 23.24 18.91 22.72 23.44 21.34 26.70 29.59

(b) 5 23.05 18.64 22.50 23.26 21.16 26.61 29.59

(b) 6 22.91 18.41 22.36 23.15 21.05 26.56 29.59

(c) 1 24.58 19.63 24.27 24.92 23.59 28.68 29.13

(c) 2 23.15 18.97 23.03 23.79 22.16 27.39 30.31

(c) 3 22.31 18.28 22.16 23.09 21.26 26.93 30.33

(c) 4 21.83 17.80 21.67 22.70 20.79 26.75 30.33

(c) 5 21.52 17.45 21.34 22.46 20.51 26.66 30.33

(c) 6 21.32 17.18 21.14 22.30 20.34 26.63 30.33

(d) 1 18.71 14.66 18.45 18.56 18.39 20.43 27.91

(d) 2 18.46 15.27 18.33 18.42 18.24 20.28 26.76

(d) 3 18.07 15.14 17.91 18.05 17.27 20.01 26.51

(d) 4 17.85 14.92 17.68 17.85 17.01 19.89 26.44

(d) 5 17.70 14.76 17.51 17.73 16.83 19.82 26.43

(d) 6 17.60 14.54 17.41 17.63 16.73 19.78 26.43

Note: The saturated modes were highlighted with italicized font for the MIVMF filter.

Fig. 13 Three images, (a) parrot with 255 × 197 pixels, (b) penguin with 1024 × 768 pixels, and (c) koala
with 1024 × 768 pixels. The entropy for (a) is 15.25, (b) 15.40, and (c) 16.18. Using the interpolation
method shown in Fig. 8, threshold value of T 0 is (a) is 79, (b) 78, and (c) 120. Please note that we
used 0.0 for ε0 for all the experiments in this paper.
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better denoising results and efficient time complexity for the
color images, which are corrupted with random-valued
impulse noises. To determine if a pixel is noise or not,
two levels of detection are used. The first level is controlled
by the MI value, and the second level is measured by the
response of four 1-D Laplacian kernels. An empirical study
was able to estimate the threshold value for MI statistics.
An interpolation method, which can roughly estimate the
threshold value that is used in the comparison with the
response of four 1-D Laplacian kernels for an image being
denoised based on the entropy measure, was also established.
The threshold value calculated with this interpolation
method was tested in our experiments and illustrated with
good denoising results.

MI statistics shows an interesting result in our exploration
of the application of color images for detecting random-val-
ued impulse noises. We compared the proposed MIVMF
with other vector-type MFs, including VMF, BVDF,
CWVMF, ACWVMF, PGVMF, and RSVMF, using the
criteria of PSNR and SSIM. The proposed MIVMF shows
promising denoising results based on these criteria. The
MIVMF is faster than the other filters tested in the experi-
ments regardless of the noise level and image complexity.
For the PSNR, the MIVMF has a higher value than the com-
pared filters. By the visualization, the proposed MIVMF can
avoid the image blurring results, preserve edge details in the
image, and achieve superior noise reduction. We found that
this kind of spatial statistic is very useful in the color image
denoising algorithm.

Although we were able to estimate the threshold values
that were successfully used in our proposed filter, the
issue of determining an optimal and adaptive threshold
value for detecting a noise pixel remains a challenging prob-
lem in our exploration of MI statistics. If this threshold value
can be estimated with an adaptive approach, it would be
more useful to generate better denoising outcomes. We
only applied the concept of spatial autocorrelation based
on MI statistics and 1-D Laplacian kernels for the impulse
noise detection in color images. We concentrated on the non-
fuzzy vector-type MFs in this work. Several fuzzy vector-
type filters that work well for noise detection and removal
also exist. For future work, we plan to investigate the follow-
ing four tasks: (1) to develop an adaptive method that can
estimate the threshold values more accurately, (2) to deter-
mine if the MIVMF is suitable and efficient for hyperspectral
remote sensing images, (3) to extend our detection scheme
to other noise models, such as Gaussian noise, and (4) to
explore the fuzzy vector-type MFs and determine if the
fuzzy mathematics can be used to improve the proposed
MIVMF performance for denoising.
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