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Throughout the history of radiology—a medical specialty that
came into being shortly after the discovery of x rays in 1895—
its practice involved a skilled observer (the radiologist) looking
at images and transcribing observations in relation to the
indications for the imaging examination and any incidental
findings. Radiologists are trained to understand how appear-
ance on imaging correlates with underlying disease/health
and strive to report it in unambiguous terms. However,
there is variation in interpretation among radiologists,1,2 and
even among radiologists speaking the same language,
descriptive terminology varies,3,4 thereby making impractical
the mass mining of radiological interpretations for discovery of
linkages between observations and specific diseases.

Despite these limitations, radiologists continued to study
and report on the linkage between specific image features
and underlying disease, e.g., contrast enhancement patterns
of focal liver lesions on CT and malignant/benign classifica-
tions of tumors on breast images. While radiologists were
busy understanding and characterizing these “imaging phe-
notypes,” biologists were making great strides understanding
the genomic basis of intracellular processes,5 leading to the
ability to characterize the “molecular phenotype” (“-omics,”
e.g., genomics, proteomics, metabolomics, transcriptomics,
copy number, methylation) through advanced sequencing
of tissue from biopsy and/or resection samples.

In the 1980s and 1990s, quantitative imaging scientists
and engineers were developing algorithms for the extraction
of imaging phenotypes from radiographic images for use in
computer-aided detection/diagnosis and for risk assessment
and prognostic/predictive tasks.6,7 However, it wasn’t until the
early part of the century when researchers began exploring
links between the imaging and molecular phenotypes. For
example, in 2002, Huo et al. showed the relationship between
computerized texture analysis of the breast parenchyma on
mammography and presence of the BRAC1/BRCA2 gene
mutation.8 In 2007, Segal et al. reported that radiological
observations of tumors seen on CT “systematically correlate
with the global gene expression programs of primary human
liver cancer” derived using microarray analysis of the resected
tumor.9 In 2008, Diehn et al. reported linkages between

the imaging phenotype of glioblastoma multiforme (GBM)
on MRI to the molecular phenotype derived using DNA micro-
array analysis10 and survival. And in 2010, Bhooshan et al.
demonstrated relationships between computer-extracted MRI
phenotypes and breast cancer subtype and aggressive-
ness.11 Many papers have since expanded the literature on
deriving quantitative image features, deriving and reducing
the interobserver variability of semantic image features, asso-
ciating image features with molecular phenotypes, genetics,
and outcomes, and the results of mining these associations
for discovery (e.g., see Refs. 12–18).

These and other early studies gave birth to two terms that
are increasingly prevalent in the literature today. Radio-
mics19,20 is a name given to the science of converting medical
images into computer-accessible and -searchable data. While
the term radiogenomics has previously been used to describe
the study of genetic variation associated with response to
radiation (radiation genomics),21 in the present context we use
radiogenomics (or imaging genomics) to describe relation-
ships between molecular and imaging phenotypes.22 To
highlight recent ongoing work in the areas covered by
these terms, and promoted through the efforts of various pro-
grams including the National Cancer Institute’s Quantitative
Imaging Network (QIN),23 the Quantitative Imaging Bio-
markers Alliance (QIBA),24 and the American Association of
Physicists in Medicine (AAPM),25 this issue of the Journal of
Medical Imaging contains a Special Section on Radiomics
and Imaging Genomics.

These ten JMI articles describe advances in radiomics and
imaging genomics along several fronts. Nyflot et al. and
Echegaray et al. explore variations in radiomic signatures
as a function of stochastic noise and region-of-interest seg-
mentation, respectively. Nyflot concludes that radiomics stud-
ies should specify standard acquisition protocols, while
Echegaray demonstrates that there may be many radiomics
features (specifically some gray-value statistics and textures)
that are minimally affected by differences in segmentation
boundaries.

Also within this special section, the value of one-
dimensional gray-value statistics, as well as multiscale and
-orientation gray-level variations (i.e., image textures), are
demonstrated for several purposes. For example, Lee et al.© 2015 Society of Photo-Optical Instrumentation Engineers (SPIE)
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apply these metrics to tumor habitats (regions with different
intensity characteristics) in MR scans of patients with GBM,
and show associations with 12-month survival. Ghosh et al.
show that texture features of tumors in CT scans of patients
with clear cell renal carcinoma can predict specific gene muta-
tions. Mattonen et al. show that the image texture within auto-
matically generated regions of interest in CT scans of patients
who have had stereotactic ablative radiotherapy for lung
cancer treatment can be used to separate radiation necrosis
from recurrence. Tiwari et al. use texture metrics on different
types of MRI scans of patients treated by laser ablation for
neuropathic cancer pain that were predictive of early treat-
ment response. Finally, while most studies of texture have
been centered on the tumors themselves, Dilger et al.
show that texture metrics computed from regions of interest
surrounding lung nodules have value in the prediction of
malignancy.

Other investigators report novel frameworks for integrating
radiomic and -omics data and mining the resulting databases
for associations with clinical data. For example, for breast
cancer, Wu et al. integrate mammographic features and SNPs
with traditional risk factors to improve risk prediction, and
Guo et al. show significant correlations of DCE-MRI radiomic
features to clinical and genomic characteristics. Both of these
and many other studies argue for continued development
and expansion of large imaging26 and -omics27 databases
utilizing standardized protocols. Finally, lest one conclude
that image features are only useful in cancer research,
see Xie et al. for a report on detecting ventricular-septal
defects in mouse embryos through segmentation and pixel
analysis.

A word of caution, however. While radiomics and imaging
genomics articles continue to populate the literature, many of
them (including some in this special section) (a) involve small
numbers of subjects with respect to the number of radiomics
features investigated, thereby raising concerns of over fitting;
or (b) do not report validations in external cohorts, thereby lim-
iting generalizability to additional patient populations, imaging
by different scanner types, etc. These articles are important
landmarks and vehicles for disseminating ideas, but them-
selves should be seen as pilot studies, suggestive of further
investigation and validation. Those of us in this research com-
munity should remain conscious that correlation does not
imply causation28 and that we need to strive to fully validate
and generalize our methods and results.
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